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Abstract

Gut microbiomes are increasingly found to be associated with many health re-
lated characteristics of human as well as animal. A regression with compositional
microbiomes covariates are commonly used to identify important bacterial taxa that
are related to various phenotype responses. Often the dimension of microbiome taxa
easily exceeds the number of available samples, which creates a serious challenge in
estimation and inference of the model. The sparse log-contrast regression method is
useful for such case as it can yield a model estimate that depends on only a small num-
ber of taxa. However, a formal statistical inference procedure for individual regression
coefficients has not been properly established yet. We propose a new estimation and
inference procedure for linear regression models with extremely low-sample sized com-
positional predictors. Under the compositional log-contrast regression framework, the
proposed approach consists of two steps. The first step is to screen relevant predictors
by fitting a log-contrast model with a sparse penalty. The screened-in variables are
used as predictors in the non-sparse log-contrast model in the second step, where each
of the regression coefficients is tested using nonparametric, resampling-based methods
such as permutation and bootstrap. The performances of the proposed methods are
evaluated by a simulation study, which shows they outperform traditional approaches
based on normal assumptions or large sample asymptotics. Application to steer mi-
crobiomes data successfully identifies key bacterial taxa that are related to important
cattle quality measures.
Availability and implementation: The sequencing data used in this article are pub-
licly available and can be found at: https://www.mg-rast.org using the accession num-
ber: mgm4909317.3. The source code can be accessed at https://github.com/Sujin-
L/Resampling-based-Inference.

1 Introduction

In recent years the human gut microbiomes study has become a growing area of research,
since it has been increasingly clear that the microbiomes play a major role in health
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and disease in humans (NIH Human Microbiome Portfolio Analysis Team, 2019). Exten-
sive research has also been conducted on microbiomes of livestock such as pigs and cows
(O’Hara et al., 2020; Bergamaschi et al., 2020). Similarly to humans, animal microbiomes
are believed to be related to various traits of animals. For example, in the case of beef
cattle, feed efficiency, fat thickness, yield grade, and marbling scores are a few examples of
important economical features that are believed to be related to gut microbiomes in the
animal (Lourenco et al., 2020).

In studies of microbiomes, the 16S ribosomal RNA (rRNA) gene targeted sequencing is
commonly used for analysis (Li, 2015). From the sequences, operational taxonomic units
(OTUs) are assigned to different taxonomic ranks, such as species, genus, family, class
and phylum. For a given sample and taxonomic level, the resulting data are tables of
read counts for each taxon. Since there is no information in the actual read numbers per
sample, relative abundance values are subject for analysis. Such data sets are referred to
as compositional data (Aitchison, 1982).

Our motivating data problem is a regression analysis with microbiome data from beef
cattle steers. The data used in this study came from 20 animals. Three different parts of
their gastrointestinal tract were sampled: rumen, cecum and rectum (i.e., feces). Micro-
bial DNA was purified from the samples, and amplification of the 16S rRNA gene was
performed as previously described by Lourenco et al. (2020). Paired-end DNA sequences
were merged, quality-filtered, and clustered into OTUs at 97% similarity using the QIIME
v1.9.1 pipeline (Caporaso et al., 2010). Taxonomic analyses were performed at several
different levels, and the results presented in the current study are the ones obtained at
the family-level, which resulted in a matrix of 36 taxa and 20 samples, whose rows are
percentage with sum to 100. The data can be viewed as a 20× 36 matrix (X), whose rows
represent the animal, and the columns correspond to the family level taxon.

Four different traits regarded as important in beef cattle production systems were con-
sidered in this study: residual feed intake, yield grade, back fat thickness, and percentage
of lipid in the carcass. A main interest of this study was to identify microbial taxa that
are related to those key traits of a cattle. In order to do so, we considered a regression
model with each of the traits as the response variable and the microbiome information as
predictors, which presents two main challenges. First, with the given sample size (20) and
the number of taxa (36), we have a large p small n, i.e., High Dimension, Low Sample
Size (HDLSS) problem, thus a regularization is inevitable since the regression model is
not estimable due to over-parametrization. Second, even when a model is estimated, de-
termining whether or not individual coefficients are significant is not straightforward since
the classical test framework such as t-test will not be properly justified.

Lee et al. (2016) and Javanmard and Montanari (2014) proposed an inference method
that can be applied for lasso estimates of regression coefficients in the case when n < p.
However, since we consider a lasso estimation with an additional constraint, these methods
are not readily applicable. Therefore, in this work, we propose a two-stage procedure for
HDLSS compositional regression modeling, with an emphasis on identifying significant
predictors. Our proposed procedure consists of two parts: variable screening followed by
individual significance tests. First, we screen out non-significant predictor variables using
compositional lasso (Lin et al., 2014; Bates and Tibshirani, 2019; Shi et al., 2016). The
screening step is introduced in order to reduce the variability in the subsequent inferences
in the next step. The initial compositional model is regularized using a lasso so as to
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encourage more variables to be screened for the subsequent inferential step. Second we
fit a compositional regression model with the screened-in variables only, for which we
test the significance of individual variables. For this non-conventional testing problem,
we consider several alternatives the classical Student’s t-test, such as permutation and
bootstrap. Note that a main purpose of this study is to explore taxa that are significantly
related to the response and not necessarily to build a predictive model. Nonetheless we
discuss how a predictive regression model can be constructed based on the chosen variables
in Section 3.2.3.

The rest of the article is organized as follows. In Section 2, we introduce a constrained
linear log-contrast model for compositional covariates and discuss the least squares esti-
mators and their properties. Section 3 presents our two-stage procedure for estimating
a sparse log-contrast model with only statistically significant predictors. An extensive
simulation study to evaluate the proposed approach is presented in Section 4 and the
motivating beef cattle microbiome data are analyzed and discussed in Section 5. Finally
Section 6 concludes this work. Proofs of theoretical results and additional results tables
are in the Supplementary Material.

2 Log-contrast Regression for Compositional Data

Let X = (x1, · · · ,xn)T ∈ Rn×p be the matrix of observed compositional variables, where
xi is a composition vector that lies in the (p − 1)-dimensional positive simplex Sp−1 =
{(x1, · · · , xp) : xj > 0 j = 1, · · · , p,

∑p
j=1 xj = 1}. Now suppose that we also observe a

continuous variable that is assumed to be related to the compositional variables in X. Let
y ∈ Rn denote the vector of the observed response. Relating X and y via a linear regression
model encounters many problems due to the geometrical constraints of the compositional
variables. For instance, one cannot interpret the partial regression coefficients in a usual
way since it is impossible to increase one variable while holding other predictors constant
due to the fixed sum.

The log-contrast model (Aitchison and Bacon-Shone, 1984) is a popular alternative
regression model for compositional predictors. First we assume that all compositions are
strictly positive. If this is not the case, replacing zeros by a small positive number is a
common remedy. See Lubbe et al. (2021) for different strategies for the zero replacement
and their comparisons. Then we define the log-ratio values, i.e., zij = log(xij/xip), j =
1, . . . , p−1, in which the pth variable is used as a reference. The linear log-contrast model
is

y = µ1 + Zpβ\p + ε, (1)

where Zp ∈ Rn×(p−1) is the matrix with the log-ratio values zij ; β\p = (β1, · · · , βp−1)T

is the regression coefficient vector; ε is the n-vector of independent noise with zero mean
and variance σ2. To avoid the ambiguity of choosing the reference component, the model
(1) is often re-formulated as the following model with a linear constraint by letting βp =

−
∑p−1

j=1 βj (Lin et al., 2014; Srinivasan et al., 2021):

y = µ1 + Zβ + ε,

p∑
j=1

βj = 0, (2)

where 1 = (1, · · · , 1)T , Z = log X is the n× p matrix and β = (β1, · · · , βp)T .
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Estimating the model (2) is done via a constrained least squares method when the
sample size n is larger than p. Note that we can re-write the model (2) as a centered
model by estimating the intercept term µ by µ̂ = ȳ − Z̄β̂:

y − ȳ = (Z− Z̄)β + ε, 1Tβ = 0,

where ȳ = ȳ1 with ȳ =
∑n

i=1 yi/n and Z̄ = (z̄1, · · · , z̄p) and z̄j = z̄j1 with z̄j =∑n
i=1 log xij/n. For notational convenience, suppose y and Z are centered response and

predictor variables respectively. Then we rewrite the model as

y = Zβ + ε, 1Tβ = 0, (3)

and we obtain the following objective function

β̂ = argmin
β∈Rp

‖y − Zβ‖22, subject to 1Tβ = 0, (4)

where ‖ · ‖2 denotes the `2 norm. The following lemma gives a closed-form solution to the
above minimization problem.

Lemma 1. The closed-form solution of (4) is obtained as follows:

β̂ = [I− (ZTZ)−11(1T (ZTZ)−11)−11T ]β̂ols (5)

where β̂ols = (ZTZ)−1ZTy.

It is straightforward to see that β̂ is unbiased and its variance is given by

Var(β̂) = σ2M(ZTZ)−1, (6)

where M = I− (ZTZ)−11(1T (ZTZ)−11)−11T .

Note that the variance of the constrained estimator (5) has a smaller variance than the
ordinary least squares estimator β̂ols as the variance in (6) can be re-rewritten as

Var(β̂) =σ2(ZTZ)−1

− σ2(ZTZ)−11(1T (ZTZ)−11)−11T (ZTZ)−1.

To test the significance of each regression coefficient, we consider testing the following
hypotheses: For j = 1, . . . , p,

H0 : βj = 0 vs. H1 : βj 6= 0. (7)

The following proposition states that we can carry out a t-test with the constrained
estimator β̂j and the associated standard error.

Proposition 2. Suppose that ε ∼ N (0, σ2I). Under the null hypothesis H0 : βj = 0, the
following test statistic has the Student’s t distribution with n − p + 1 degrees of freedom,
i.e.,

tj =
β̂j

ŝe(β̂j)
∼ tn−p+1, (8)

where ŝe(β̂j) =

√
V̂ar(β̂)jj, V̂ar(β̂)jj is the jth diagonal entry of σ̂2M(ZTZ)−1, σ̂2 =

SSE(β̂)/(n− p+ 1), and SSE(β̂) = (y − Zβ̂)T (y − Zβ̂).
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The level α test can be carried out by rejecting the null hypothesis if |tj | > tα/2,n−p+1,
where tα,n−p+1 is (1 − α)th quantile of tn−p+1 distribution. Moreover, a 100(1 − α)%
confidence interval for βj is given by[

β̂j − tα/2,n−p+1ŝe(β̂j), β̂j + tα/2,n−p+1ŝe(β̂j)
]
.

Note that the above parametric inference cannot work for our motivating cattle data
with p > n. Estimation of the model (2) will suffer from overfitting and high variances.
Even if the model can be estimated, the t-test cannot be used unless the errors are normal,
since the sample size is too small for normal approximation. In the next section, we present
a sequential approach with which we overcome these problems and are able to make
inference on the significance of predictor variables.

3 Inference for High-dimensional Log-contrast Regression

3.1 Screening via Sparse Log-contrast Regression

A regularized regression is an effective way to overcome high-dimensionality of the data.
In this section we consider a popular sparse regularization method, lasso regression (Tib-
shirani, 1996). Applying the `1 regularization approach to the log-contrast model (2), Lin
et al. (2014) proposed a constrained convex optimization problem for the following model

β̂λ = argmin
β

(
1

2n
‖y − Zβ‖22 + λ‖β‖1

)
, (9)

subject to 1Tβ = 0,

where β = (β1, · · · , βp)T , λ > 0 is a regularization parameter, and ‖ · ‖1 denotes `1 norm.

Since the constrained lasso optimization problem (9) does not have a closed form solu-
tion, one needs to rely on a numerical algorithm such as quadratic programming (Brodie
et al., 2009; Bondell and Reich, 2009) or the alternating direction method of multipliers
(ADMM) (Lin et al., 2014; Fang et al., 2015). One can also obtain a solution path by
using the method proposed by Jeon et al. (2020). In this work, we use R package glmnet

with a weighting trick suggested by Bates and Tibshirani (2019). That is, we augment the
data with an observation with all covariates equal to one, and the response value zero. By
assigning this value a dominatingly large weight, one can force the resulting solution β̂λ
to have an arbitrary small

∑p
j=1 β̂j .

The number of screened variables in this step is determined by the sparsity tuning
parameter λ. Lin et al. (2014) suggest to use λ that minimizes the generalized information
criterion (GIC) (Fan and Tang, 2013):

GIC(λ) = log(σ̂2
λ) + (sλ − 1)

log log(n)

n
log(max(p, n))

where σ̂2
λ= ‖y − Zβ̂λ‖22/n and sλ is the number of nonzero coefficients in β̂λ. Note that

because of the zero-sum constraint, the effective number of free parameters is sλ − 1 for
sλ ≥ 2. However, we have found that tuning based on GIC tends to choose too many
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predictors, as will be seen in Sections 4 and 5. Thus we propose to select λ by a cross-
validation based on the mean squared error (MSE) defined as below:

MSE(λ) =
r∑
i=1

(yi − ŷi,λ)2,

where yi represents the ith sample in test data, ŷi,λ is its fitted value based on the coef-
ficients obtained with the tuning parameter λ, and r is the test sample size of each fold.
In all our empirical studies, we used a 10-fold cross-validation. Since MSE, as a function
of λ, does not usually yield a smooth trajectory, we employ loess smoothing for better
stability. Let the smoothed version of the MSE be denoted by m(λ). Then we choose the
smallest λ that yields the minimum m(λ) plus its standard error:

λ̂ = min{λ : m(λ) ≤ m(λmin) + s.e.(m(λmin))}. (10)

Note that this rule is similar in spirit to the one-standard error rule in Hastie et al. (2009),
except that we favor a larger model. We then apply the chosen λ̂ in (9) using the whole
training data. Variables with nonzero coefficient estimates are screened in, and we record
the indices set J = {j : β̂j(λ̂) 6= 0, j = 1, . . . , p}. Note that in rare, but theoretically

possible, cases where no variable is screened, we adjust λ̂ so that at least two variables
must be screened. Specifically, we set λ̂ = max{λ : #{i : β̂i(λ) 6= 0} ≥ 2}. There was
a small fraction of runs in the simulation study with an extremely small sample size
(n = 20) when such adjustment was necessary, while there was no such case in the real
data analysis, as seen in Table 3. A reviewer raised a question about comparison of the
proposed screening idea with ones based on GIC, MSE, and also the typical one-standard
error rule that encourages higher parsimony. We investigate this question by implementing
the screening rules to our motivating cattle microbiomes data in Section 5.

3.2 Testing Individual Predictors

Recall that J is the set of indices of screened variables. Consider the reduced log-contrast
model with screened variables:

y = Zβ + ε, subject to βj = 0, j /∈ J,
∑
j∈J

βj = 0. (11)

In below we discuss a few resampling-based approaches for formally testing whether each
of the variables in J is significantly related to the response, controlling for other variables
in J .

3.2.1 Permutation Tests

There exist many permutation methods for individual significance testing in multiple re-
gression. Manly (2018) discuss permutation of the response values to nullify the relation-
ship between the response and the predictors. Freedman and Lane (1983) and Kennedy
(1995) propose to permute the residuals under the reduced model, i.e., the null model
under H0 : βj = 0, while Ter Braak (1992) use residuals from the full model. All these
methods give empirical p-values by comparing the observed test statistic with the reference
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distribution generated by random permutations. Anderson and Robinson (2001) show that
all three methods become asymptotically equivalent as the sample size n increases.

In this work, we take an approach similar to Manly (2018). After the screening step in
Section 3.1, we estimate the model (11) and obtain the estimates β̂j , j ∈ J , using (5) and
calculate the associated t-statistics tj using (8). In order to obtain reference distributions
for these statistics, we randomly permute the entries of the response vector y and denote
the permuted response by y∗. Then the model (11) is fit with y∗ and the unpermuted Z,
yielding the estimates β̂∗j and the associated t-statistics t∗j , j ∈ J . This process is repeated

M times, producing the permutation distribution of β̂∗j and t∗j . We use M = 1000 for all
our empirical studies. The empirical p-value for testing H0 : βj = 0 vs. H1 : βj 6= 0 in the
model (11) is then defined as the tail probability in the permutation distribution (Hope,
1968), i.e.,

Pp(tj) =
1

M

M∑
m=1

I
(
|t∗mj | ≥ |tj |

)
, (12)

Pp(β̂j) =
1

M

M∑
m=1

I
(
|β̂∗mj | ≥ |β̂j |

)
, (13)

where I(·) is the indicator function. The null hypothesis (7) is rejected if the empirical
p-value is less than the level of significance α. We denote these tests by φtj ,α and φβ̂j ,α,

respectively. Note that while Manly (2018) only used tj , here we also consider β̂j , whose
empirical performance in terms of variable selection is sometimes superior; see Section 4.

In the following theorem, we show that the permutation tests above asymptotically
maintain the nominal size α for a large n, under the exchangeable errors condition. Note
that the exchangeable errors condition is significantly weaker than requiring i.i.d. Gaussian
errors. We also assume that the random permutation is equi-probable, i.e. each permuta-
tion y∗ occurs with probability 1/n!, which is a standard assumption that holds naturally.

Theorem 3. Assume that in (11), the errors {εi : i = 1, . . . , n} are exchangeable. Then,
the permutation tests φβ̂j ,α and φtj ,α are (asymptotically) unbiased in the following sense.

(The following statements remain true if φβ̂j ,α is replaced by φtj ,α.)

(i) Suppose that |J | = 2. Let α ∈ (0, 1) be such that α = k/n! for some k = 1, 2, . . . , n!.
Then for each j ∈ J , the test φβ̂j ,α is exact in the sense that the type I error rate of

φβ̂j ,α is exactly α.

(ii) Suppose that |J | > 2. Let j ∈ J be fixed. If, under the null hypothesis H0 : βj =
0, E(y2

i ) is bounded below, and E(|yi|3) is bounded above, then the type I error
rate of φβ̂j ,α approaches to α as the sample size increases. More precisely, we have

limn→∞ Pr(Pp(β̂j) < α) = α for any α ∈ (0, 1).

3.2.2 Bootstrap Confidence Interval

Bootstrap confidence interval (CI) (Efron, 1982; Davison and Hinkley, 1997) is an effective
tool for quantifying the variability of a statistic in a non-parametric way. The hypotheses
in (7) can be tested based on whether or not a two-sided bootstrap CI contains zero.
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We consider both percentile bootstrap and studentized bootstrap in this work. The per-
centile bootstrap interval with 100(1− α)% confidence is simply the interval between the
100(α/2)th and 100(1 − α/2)th percentiles of a bootstrap distribution of β̂j . The per-

centile bootstrap CI assumes that there exists a monotone transformation of β̂j , say ξ(β̂j),

such that ξ(β̂j) − ξ(βj) is a pivot, whereas the studentized bootstrap CI assumes that

(β̂j − βj)/ŝe(β̂j) is a pivot, where ŝe(β̂j) is the standard error estimate of β̂j .

Similarly to the permutation procedure, we first obtain the estimate β̂j for the screened
model (11), as given by (5). We generate B bootstrap data sets with which we compute the
bootstrap replications β̂∗bj and t∗bj = (β̂∗bj (b) − β̂j)/ŝe(β̂∗bj ), where ŝe(β̂∗bj ) is the standard

error estimate of β̂j , given by Proposition 2, with β̂j replaced by β̂∗bj , for b = 1, · · · , B.

We used B = 1000 in this work. Then from the bootstrap distribution of β̂∗1j , . . . , β̂
∗B
j , the

percentile bootstrap CI is constructed as follows:

Îp,α =
[
β̂j,lo, β̂j,up

]
=
[
β̂
∗(α/2)
j , β̂

∗(1−α/2)
j

]
, (14)

where β̂
∗(α/2)
j and β̂

∗(1−α/2)
j respectively denote the 100(α/2)th and 100(1 − α/2)th per-

centiles of the bootstrap distribution. Alternatively, the studentized bootstrap CI is con-
structed as follows:

Îs,α =
[
β̂j − t̂∗(1−α/2)

j ŝe(β̂j), β̂j − t̂∗(α/2)
j ŝe(β̂j)

]
, (15)

where t
∗(α/2)
j and t

∗(1−α/2)
j respectively denote the 100(α/2)th and 100(1 − α/2)th per-

centiles of the bootstrap distribution of t∗1j , . . . , t
∗B
j . The bootstrap CIs can be used for

testing (7) at level α by rejecting H0 : βj = 0 if the CI contains zero.

The following theorem shows that the coverage probability for either bootstrap CI con-
verges to the nominal level as the sample size increases (Carpenter and Bithell, 2000),
which implies that the hypothesis tests based on the bootstrap CIs are asymptotically
exact.

Theorem 4. Assume that the model (11) is true. Then the coverage probabilities of the
bootstrap CIs in (14) and (15) converge to 1− α as n increases. Specifically,

(i) Pr(βj ∈ Îp,α) = 1− α+Op

(
1√
n

)
for j ∈ J .

(ii) Pr(βj ∈ Îs,α) = 1− α+Op
(

1
n

)
for j ∈ J .

3.2.3 Estimation of the Final Model

As mentioned in Section 1, the purpose of our proposed procedure is to explore the as-
sociations of individual compositional taxa with a response variable. Nevertheless a final
predictive model can be constructed based on the found associations, as follows. Suppose
that s number of coefficients are found to be significant based on the test procedures as
discussed in the previous subsection. If s ≥ 2, then the final model estimate is obtained
by fitting the log-contrast model (2) with those s variables. However the case when s = 1
needs a special treatment. Due to the compositional nature of the variables, if x is found
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to be significant, then it unavoidably implies that 1 − x is also significant. Thus we use
the following model:

yi = µ+ β1 log(xi) + β2 log(1− xi) + εi subject to β1 + β2 = 0,

which leads to following unrestricted, simple regression model

yi = µ+ β1 log

(
xi

1− xi

)
+ εi.

4 Simulation Study

In this section we compare performances of the various inference methods that were
discussed in the previous section: parametric inference described in Proposition 2, the
permutation methods (12) with t-statistic and (13) with β̂, the percentile bootstrap CI
(14), the studentized bootstrap CI (15), and also the union of significant variables from
the four resampling-based methods. They are respectively denoted as “t-test”,“perm(t)”,
“perm(β)”, “boot(p)”, “boot(s)”, and “union” (see Section 5.) As described in Section 3,
these inferential methods are applied to the screened model (11). We also include the com-
positional lasso with GIC (Lin et al., 2014) and clr-lasso (Susin et al., 2020) for comparison.
The clr-lasso is the usual lasso regression with the predictors given by the clr-transformed
compositions. The clr-transformation of a composition x is

clr(x) = [log(x1/g(x)), · · · , log(xp/g(x))] ,

where g(x) = (
∏p
j=1 xj)

1/p is a geometric mean of the composition. We used the cross-
validated tuning parameter for the clr-lasso as done in Susin et al. (2020).

We generate the data from the following two models, which are replicated 1000 times
respectively. The first model is a logistic-normal model similar to the examples in Lin et al.
(2014). The second model is supposed to mimic our motivating cattle data, in the sense
that we directly use the observed microbiome covariates and the estimated values of the
coefficients as the true values. All computations are conducted in R (version 4.1.2). The
total computation time for performing all four proposed resampling-based methods on a
single data set of size (n, p) = (50, 36) is 5.533 seconds (on average); these times are 35.80
and 6.386 seconds for the cases (n, p) = (100, 200) and (20, 36), respectively. Computation
times are measured on a Macbook Pro (Intel Core i7, 2.6 GHz, 16 GB RAM).

• Model 1

We generate an n×p data matrix W = (wij) from a multivariate normal distribution
Np(θ,Σ), and then obtain the covariate matrix X = (xij) by transforming xij =
exp(wij)/

∑p
k=1 exp(wik). To reflect the fact that the components of a composition

in metagenomic data often differ by orders of magnitude, we let θ = (θj) with
θj = log(0.5p) for j = 1, · · · , 5 and θj = 0 otherwise. As for the covariance matrix
Σ, we let Σ = 3(ρ|i−j|) with ρ = 0.2 or 0.5. Finally we generate the response values
using the model in (3) with βtrue = (1,−0.8, 0.6, 0, 0,−1.5,−0.5, 1.2, 0, · · · , 0)T and
σ = 3. We set (n, p) = (50, 36), (100, 200), and (20, 36). Note that the last sample
size-dimension setting is from the cattle data example. Extensive simulation studies
with n = (20, 50, 100), p = (10, 36, 100, 200) are provided in the Supplementary
Material Section S1.
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• Model 2

We consider the following model

y = Xβtrue + ε,

where the p = 36 covariates in X are from the logarithms of microbiome taxa
compositions measured in the rumen sample of the cattle microbiome data set, n =
20, and βtrue = (−1.06, 1.06, 0, · · · , 0)T , which is the final coefficient estimate for
the data with RFI as the response, as will be seen in Section 5. For this model
four different error distributions are considered: ε ∼ N(0, σ2) with σ = 1, 3, and
ε ∼ Laplace(0, σ), with σ =

√
1/2,

√
9/2.

As for the performance criteria we use the following measures for variable selectivity:
false negatives (FN), false positives (FP), positive predictive value (PPV) defined as

PPV =
TP

TP + FP
,

and Matthew’s correlation coefficient (MCC) by Matthews (1975) defined as

MCC =
TP× TN− FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
,

where TP and TN denote true positives and true negatives respectively. Note that MCC
ranges in the interval [−1,+1], with extreme vales −1 (for only when TP = 0 and TN = 0)
and +1 (for only when FP = 0 and FN = 0) reached in the case of complete misclassifi-
cation and perfect classification, respectively, while MCC = 0 represents no better than
random prediction (Chicco and Jurman, 2020).

Table 1 displays the results under Model 1 with different correlation levels among the
covariates and Table 2 shows the results from Model 2 with normal errors and Laplace
errors. While the resampling-based methods such as permutation and bootstrap seem
generally better than GIC, clr-lasso, and t-test, there are some findings worth mentioning.
We have found that GIC performs decently when n is not small, however, its performance
deteriorates when n = 20. It is also noticeable that when the sample size is small, the four
resampling-based methods tend to select variables conservatively and often yield model
estimates with less variables than desired. This is in contrast to that the other three
methods tends to choose more variables and inevitably yield higher FP.

The high PPV values of perm(β) are due to that the method yields extremely sparse
model estimates with only few signal variables. It is clear that when the sample size is
too small such as (n, p) = (20, 36), most methods suffer from inflated FN as it becomes
challenging to detect signals. In particular, perm(β) tends to be the most conservative
in detecting signals, which implies a possible lack of power. On the other hand, in large
n settings, perm(t) tends to yield high FPs by being too liberal in signal detection. In
this regard, the boot(p) seems more effective for small sized data considering the overall
balance of the performance measures in both settings. It is also interesting to see that t-test
and perm(t) show very similar results throughout, even though the latter is consistently
a bit better.
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Table 1: Average performance measures (with standard errors) of the eight methods based on
1000 repetitions under Model 1. Note that there are six true signal variables in this setting,
i.e., ‖β‖0 = 6.

ρ (n, p) Method FN FP ‖β̂‖0 MCC PPV

0.2

(50, 36)

GIC 2.94 (0.06) 1.42 (0.06) 4.49 (0.1) 0.51 (0.01) 0.76 (0.01)
clr-lasso 1.98 (0.05) 3.24 (0.12) 7.26 (0.15) 0.56 (0.01) 0.67 (0.01)
t-test 1.65 (0.03) 3.18 (0.08) 7.53 (0.09) 0.59 (0.01) 0.63 (0.01)
perm(t) 1.69 (0.03) 3.06 (0.08) 7.37 (0.09) 0.59 (0.01) 0.64 (0.01)
perm(β) 4.03 (0.04) 0.06 (0.01) 2.03 (0.04) 0.47 (0.01) 0.97 (0.00)
boot(p) 2.72 (0.05) 0.94 (0.04) 4.23 (0.06) 0.58 (0.01) 0.81 (0.01)
boot(s) 3.00 (0.05) 0.74 (0.03) 3.75 (0.07) 0.55 (0.01) 0.84 (0.01)
union 1.68 (0.03) 3.11 (0.08) 7.43 (0.08) 0.59 (0.01) 0.63 (0.01)

(100, 200)

GIC 2.72 (0.05) 0.85 (0.04) 4.13 (0.07) 0.64 (0.01) 0.85 (0.01)
clr-lasso 1.47 (0.04) 5.74 (0.24) 10.27 (0.26) 0.63 (0.00) 0.60 (0.01)
t-test 0.94 (0.03) 11.61 (0.22) 16.67 (0.23) 0.51 (0.00) 0.35 (0.00)
perm(t) 0.97 (0.03) 11.43 (0.22) 16.46 (0.22) 0.51 (0.00) 0.35 (0.00)
perm(β) 3.27 (0.04) 0.07 (0.01) 2.81 (0.04) 0.63 (0.01) 0.98 (0.00)
boot(p) 1.45 (0.04) 5.26 (0.11) 9.81 (0.12) 0.59 (0.00) 0.52 (0.01)
boot(s) 1.66 (0.05) 4.93 (0.14) 9.27 (0.16) 0.57 (0.01) 0.52 (0.01)
union 0.94 (0.03) 11.81 (0.24) 16.87 (0.24) 0.51 (0.00) 0.34 (0.00)

(20, 36)

GIC 1.33 (0.03) 17.28 (0.07) 21.95 (0.07) 0.15 (0.00) 0.21 (0.00)
clr-lasso 3.56 (0.06) 4.93 (0.15) 7.37 (0.20) 0.23 (0.01) 0.44 (0.01)
t-test 4.89 (0.05) 1.73 (0.10) 2.84 (0.14) 0.15 (0.01) 0.52 (0.01)
perm(t) 4.73 (0.05) 2.08 (0.11) 3.35 (0.15) 0.17 (0.01) 0.50 (0.01)
perm(β) 5.83 (0.02) 0.09 (0.01) 0.26 (0.02) 0.04 (0.00) 0.65 (0.03)
boot(p) 4.35 (0.04) 1.48 (0.05) 3.13 (0.07) 0.28 (0.01) 0.57 (0.01)
boot(s) 4.66 (0.05) 2.9 (0.13) 4.24 (0.17) 0.13 (0.01) 0.41 (0.01)
union 3.69 (0.05) 4.18 (0.13) 6.5 (0.16) 0.26 (0.01) 0.46 (0.01)

0.5

(50, 36)

GIC 3.80 (0.05) 1.23 (0.06) 3.43 (0.10) 0.39 (0.01) 0.73 (0.01)
clr-lasso 3.17 (0.05) 2.58 (0.11) 5.41 (0.15) 0.43 (0.01) 0.67 (0.01)
t-test 2.29 (0.04) 2.9 (0.08) 6.62 (0.09) 0.52 (0.01) 0.62 (0.01)
perm(t) 2.32 (0.04) 2.79 (0.07) 6.47 (0.09) 0.52 (0.01) 0.62 (0.01)
perm(β) 4.41 (0.04) 0.15 (0.01) 1.74 (0.04) 0.38 (0.01) 0.92 (0.01)
boot(p) 3.17 (0.05) 1.07 (0.04) 3.90 (0.07) 0.51 (0.01) 0.77 (0.01)
boot(s) 3.38 (0.05) 0.92 (0.04) 3.54 (0.07) 0.48 (0.01) 0.78 (0.01)
union 2.28 (0.04) 2.86 (0.07) 6.59 (0.09) 0.52 (0.01) 0.62 (0.01)

(100, 200)

GIC 3.77 (0.04) 0.91 (0.04) 3.14 (0.07) 0.47 (0.01) 0.79 (0.01)
clr-lasso 2.95 (0.04) 4.3 (0.22) 7.35 (0.25) 0.51 (0.00) 0.63 (0.01)
t-test 1.80 (0.03) 9.39 (0.20) 13.59 (0.21) 0.46 (0.00) 0.35 (0.00)
perm(t) 1.81 (0.04) 9.3 (0.20) 13.48 (0.21) 0.47 (0.00) 0.36 (0.00)
perm(β) 3.74 (0.04) 0.19 (0.01) 2.45 (0.04) 0.54 (0.01) 0.93 (0.01)
boot(p) 2.25 (0.04) 4.92 (0.10) 8.66 (0.11) 0.51 (0.01) 0.48 (0.01)
boot(s) 2.39 (0.04) 4.55 (0.10) 8.17 (0.12) 0.50 (0.01) 0.48 (0.01)
union 1.79 (0.03) 9.58 (0.20) 13.79 (0.21) 0.46 (0.00) 0.35 (0.00)

(20, 36)

GIC 1.54 (0.03) 16.95 (0.08) 21.4 (0.08) 0.14 (0.00) 0.21 (0.00)
clr-lasso 4.10 (0.05) 4.36 (0.15) 6.25 (0.20) 0.18 (0.01) 0.42 (0.01)
t-test 5.04 (0.04) 1.54 (0.09) 2.49 (0.12) 0.14 (0.01) 0.49 (0.01)
perm(t) 4.90 (0.04) 1.87 (0.10) 2.96 (0.13) 0.15 (0.01) 0.48 (0.01)
perm(β) 5.81 (0.02) 0.14 (0.01) 0.33 (0.02) 0.04 (0.00) 0.57 (0.03)
boot(p) 4.75 (0.03) 1.35 (0.04) 2.60 (0.06) 0.22 (0.01) 0.52 (0.01)
boot(s) 4.91 (0.04) 2.56 (0.12) 3.65 (0.15) 0.11 (0.01) 0.40 (0.01)
union 4.14 (0.04) 3.66 (0.13) 5.53 (0.16) 0.22 (0.01) 0.43 (0.01)

The findings from the extensive simulations in the Supplementary Material generally
agree with what we have in the paper. All methods perform better in large n setting
as expected. GIC performs well when n is relatively large, however, it tends to choose
too many variables when p is larger than n. The resampling-based methods are better
in small sized data. The perm(β) method tends to yield much sparse model estimates
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Table 2: Average performance measures (with standard errors) of eight methods based on 1000
repetitions under Model 2. Note that there are three true signal variables in this setting, i.e.,
‖β‖0 = 2.

Error σ Method FN FP ‖β̂‖0 MCC PPV

normal

1

GIC 0.06 (0.01) 15.97 (0.24) 17.92 (0.24) 0.28 (0.01) 0.17 (0.01)
clr-lasso 0.42 (0.02) 5.15 (0.16) 6.73 (0.17) 0.43 (0.01) 0.37 (0.01)
t test 0.60 (0.03) 2.48 (0.12) 3.88 (0.13) 0.51 (0.01) 0.57 (0.01)
perm(t) 0.51 (0.02) 2.52 (0.12) 4.01 (0.13) 0.56 (0.01) 0.58 (0.01)
perm(β) 1.33 (0.02) 0.04 (0.01) 0.71 (0.02) 0.40 (0.01) 0.96 (0.01)
boot(p) 0.58 (0.02) 0.75 (0.03) 2.17 (0.04) 0.66 (0.01) 0.73 (0.01)
boot(s) 0.87 (0.03) 2.68 (0.13) 3.81 (0.15) 0.42 (0.01) 0.56 (0.01)
union 0.30 (0.02) 3.83 (0.14) 5.54 (0.15) 0.59 (0.01) 0.52 (0.01)

3

GIC 0.39 (0.02) 18.99 (0.25) 20.6 (0.26) 0.13 (0.00) 0.10 (0.00)
clr-lasso 1.57 (0.02) 3.37 (0.18) 3.81 (0.20) 0.07 (0.01) 0.17 (0.01)
t test 1.57 (0.02) 1.59 (0.08) 2.02 (0.09) 0.16 (0.01) 0.27 (0.01)
perm(t) 1.54 (0.02) 1.76 (0.09) 2.21 (0.10) 0.16 (0.01) 0.27 (0.01)
perm(β) 1.74 (0.02) 0.63 (0.02) 0.89 (0.03) 0.13 (0.01) 0.32 (0.02)
boot(p) 1.58 (0.02) 1.21 (0.03) 1.63 (0.04) 0.17 (0.01) 0.27 (0.01)
boot(s) 1.58 (0.02) 2.10 (0.11) 2.52 (0.12) 0.13 (0.01) 0.24 (0.01)
union 1.41 (0.02) 2.77 (0.12) 3.36 (0.13) 0.18 (0.01) 0.24 (0.01)

laplace

1√
2

GIC 0.07 (0.01) 15.58 (0.24) 17.5 (0.24) 0.28 (0.01) 0.17 (0.01)
clr-lasso 0.43 (0.02) 4.74 (0.15) 6.31 (0.17) 0.43 (0.01) 0.38 (0.01)
t test 0.58 (0.03) 2.28 (0.12) 3.70 (0.13) 0.54 (0.01) 0.59 (0.01)
perm(t) 0.53 (0.02) 2.29 (0.12) 3.76 (0.12) 0.57 (0.01) 0.61 (0.01)
perm(β) 1.31 (0.02) 0.06 (0.01) 0.74 (0.02) 0.41 (0.01) 0.94 (0.01)
boot(p) 0.54 (0.02) 0.71 (0.03) 2.17 (0.04) 0.69 (0.01) 0.75 (0.01)
boot(s) 0.90 (0.03) 2.45 (0.13) 3.54 (0.14) 0.42 (0.01) 0.58 (0.01)
union 0.29 (0.02) 3.57 (0.14) 5.28 (0.14) 0.60 (0.01) 0.54 (0.01)

3√
2

GIC 0.41 (0.02) 18.91 (0.25) 20.50 (0.27) 0.13 (0.00) 0.09 (0.00)
clr-lasso 1.57 (0.02) 3.10 (0.16) 3.54 (0.18) 0.07 (0.01) 0.16 (0.01)
t test 1.55 (0.02) 1.67 (0.08) 2.12 (0.09) 0.16 (0.01) 0.26 (0.01)
perm(t) 1.53 (0.02) 1.80 (0.09) 2.27 (0.10) 0.16 (0.01) 0.26 (0.01)
perm(β) 1.72 (0.02) 0.70 (0.03) 0.98 (0.03) 0.13 (0.01) 0.31 (0.02)
boot(p) 1.58 (0.02) 1.18 (0.03) 1.60 (0.04) 0.17 (0.01) 0.27 (0.01)
boot(s) 1.59 (0.02) 1.96 (0.10) 2.37 (0.11) 0.13 (0.01) 0.23 (0.01)
union 1.43 (0.02) 2.66 (0.11) 3.23 (0.12) 0.18 (0.01) 0.23 (0.01)

which indicates that it has a relatively smaller power. On the other hand, perm(t) tends
to have large FP. The boot(p) seems to be most effective for small sized data considering
the overall balance of the performance measures. The boot(s) is overall similar to boot(p),
though slightly worse.

The effect of higher correlation can be seen by comparing the ρ = 0.2 part and the
ρ = 0.5 part in Table 1. Overall, the compared methods have worse MCC and FN but
better FP under higher correlation. Even though all methods suffer from the collinearity
regardless of the sample size and dimension, it seems that the bootstrap methods are most
robust. From Table 2 we can get an idea on which methods can deal with larger noise levels
in the data. Regardless of the error distribution, most methods suffer from larger noise
levels with respect to MCC and PPV, while the boot(p) is the best in comparison.

In addition to the variable selectivity results appearing in Tables 1 and 2, we have also
investigated the accuracy of the coefficient estimation. Figure 1 shows the error plot, i.e.,
average of the coefficient estimates ± standard errors, under Model 2 with normal errors
with σ = 1, for GIC and boot(p) methods. Recall from Table 1 that GIC chooses too many
variables (17.92 on average), whereas boot(p) chooses only 2.17 variables. (There are two
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true signal variables.) We also observe in Figure 1 that the coefficients corresponding to
most of the noise variables are correctly estimated by the boot(p) method to be zero
with very narrow CIs, while the coefficient estimates from GIC are highly variable, and
are oftentimes biased. As for the signal coefficients (Peptostreptococcaceae, Bifidobacte-
riaceae), both GIC and boot(p) are biased towards zero. The difference between the bias
from boot(p) and GIC does not stand out, when compared to the standard error. A re-
viewer has pointed out that the bias of boot(p) for the signal coefficients is intrinsic to the
conservative nature of the method, which helps in correctly estimating the zero coefficients.

In summary, the simulation study suggests that resampling-based methods are able to
select signal variables with better accuracy than existing approaches under various scenar-
ios. However, even though bootstrap methods performed a bit better than permutation
methods in this study, we suggest that rather than relying on a particular method, one
should implement multiple methods and consider inspecting the union of the selected
variables. We also apply this idea to the real data in the next section.

Figure 1: Error plot of the estimated coefficients under Model 2 with normal error with σ = 1.
Note that there are two true signal variables which are βPeptostreptococcaceae = −1.06,
βBifidobacteriaceae = 1.06.
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5 Steer Quality Prediction with Microbiomes

In this section, we attempt to identify important bacterial taxa in steers’ rumen, cecum
and feces that are related to key quality traits of beef cattle: residual food intake (RFI),
back fat, lipid, and yield grade (YG). Since there are three sets of microbiomes with
four response variables, there will be 12 regression models to fit, each with 36 covariates
and 20 sample size. In Section 5.1 we give a detailed description of the analysis with
rumen microbiomes to predict RFI. The results of all modelings will be presented later in
Section 5.2 with detailed discussions on scientific implications on the findings. For the zero
values in the data, we replace them by the smallest nonzero entry of each data matrix X,
after which we re-closure each row to make it a composition. (Aitchison, 1982).

Table 3 summarizes the results from the variable screening step with the compositional
lasso. We report the number of screened taxa based on GIC, MSE, MSE + 1-se, and MSE
− 1-se. Note the MSE + 1-se is the proposed screening rule, discussed in Section 3.1,
while MSE − 1-se is the usual one standard error rule, e.g., implemented in the R package
glmnet. Considering p = 36, the GIC rule screens in too many taxa except for RFI models,
while the MSE and MSE − 1-se rules screened in too few.

Table 3: Number of screened taxa in the cattle microbiome data. The subscripts r, c, f denote
microbiome predictors from rumen, cecum, and feces, respectively.

RFIr RFIc RFIf Backr Backc Backf Lipidr Lipidc Lipidf YGr YGc YGf

GIC 1 1 20 15 26 22 24 24 24 24 26 27
MSE 2 6 4 7 3 1 1 0 4 5 2 1
MSE + 1-se 4 6 4 11 3 3 6 2 4 9 3 2
MSE − 1-se 1 4 4 5 2 1 0 0 4 5 1 1

5.1 Regressing RFI on Rumen Microbiomes

In modeling with RFI as the response and rumen microbiome compositions as predictors,
four bacterial taxa, namely Peptostreptococcaceae, Bifidobacteriaceae, Clostridiales, and
Fibrobacteraceae, are screened at the screening step. The individual significance test re-
sults for the four taxa are shown in Table 4. We also assess how stable the selection is by
using the “stability selection” proposed by Meinshausen and Bühlmann (2010). We take
100 sub-samples of size n/2 compute the frequency of the selection, which is shown in the
last column of the table. All four screened taxa have 75 or higher selection frequencies out
of 100, while the rest of 36 − 4 = 32 taxa have been selected less than 75 times, which
indicates that the screening results are quite stable. See the Supplementary Material for
the detailed procedure and the results.

As seen with simulated data in the previous section, perm(β) method is most conserva-
tive in that it only selects Peptostreptococcaceae, where the other three methods choose
Bifidobacteriaceae as well as Peptostreptococcaceae. Then the final model can be based
on only one bacterium Peptostreptococcaceae:

R̂FI = −9.63− 1.04× log
Peptostreptococcaceae

1− Peptostreptococcaceae
,
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Table 4: Four bacterial taxa in rumen found to be significantly related to RFI. * indicates p-value
< 0.05 or confidence interval not containing zero.

Taxa β̂ perm(t) perm(β) boot(p) boot(s) selection
frequency

Peptostreptococcaceae −1.09 0.01* 0.02* [−1.74,−0.47]* [−1.75,−0.57]* 0.76

Bifidobacteriaceae 0.90 0.05* 0.09 [ 0.04, 1.72]* [ 0.04, 2.29]* 0.77
o Clostridiales 0.52 0.18 0.28 [−0.40, 1.35] [−1.09, 1.56] 0.75
Fibrobacteraceae −0.33 0.19 0.30 [−0.71, 0.10] [−0.72, 0.21] 0.81

or based on the two bacterial taxa:

R̂FI = −3.56− 1.06× log(Peptostreptococcaceae) + 1.06× log(Bifidobacteriaceae).

According to Welch et al. (2021), RFI is calculated as the difference between observed
and expected feed intake based on metabolic body weight and level of body weight gain.
Consequently, if an animal eats less than expected within that level of gain, that animal is
considered more efficient than its counterparts. Thus being, because lower values of RFI are
desirable, the bacterial taxa correlated negatively with this trait should be the ones that are
more desirable. This was the case of Fibrobacteraceae, which had a negative association
with RFI values. Fibrobacteraceae have been recognized as main cellulose degraders in
ruminant gut systems (Ozbayram et al., 2018). Therefore, a greater abundance of this
group likely contribute to a greater degradation of fibrolytic material in the rumen of
the most feed-efficient cattle, resulting in more efficient animals (with lower RFI values),
and consequently the observed negative correlation between RFI and Fibrobacteraceae.
This relation, however, turns out to be non-significant in our analysis. Instead, our result
indicates stronger associations of Peptostreptococcaceae and Bifidobacteriaceae to RFI,
which invites a further investigation on the biological mechanism.

Results from the current study are in contrast with the ones reported by Welch et al.
(2020) who found no correlations between RFI and the ruminal abundances of Bifidobac-
teriaceae and Peptostreptococcaceae in beef steers. However, the negative association that
we detected between RFI and Peptostreptococcaceae might be partially explained by the
high rate of production of acetate observed by members of this family (Slobodkin, 2014);
given that acetate is an important source of energy in ruminants. On the other hand, bacte-
ria from the family Bifidobacteriaceae are often associated with a healthy gastrointestinal
tract, and are often included in probiotics (Gomes and Malcata, 1999; Maldonado-Gómez
et al., 2016). Thus, our findings suggest that better feed efficiency, recognizable as lower
RFI values, is not necessarily an indicator of better ruminal health.

5.2 Results of All Regressions

We have applied our proposed two-stage procedure to the rest of the combinations of a
response and microbiome samples, all of which are with the sample size n = 20 and the
numbers of taxa p = 36. Table 5 summarizes the numbers of significant taxa found by
compared approaches. We can see that the GIC-based compositional lasso (Lin et al.,
2014) and the cross-validated clr-lasso (Susin et al., 2020) choose either too many (more
than 20 taxa out of 36) or none, while the proposed four methods consistently select zero
to four taxa. Since the methods do not necessarily agree, we compute the intersection and
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union of the selected taxa by the four methods. The intersection result indicates that there
are at least some level of consistency in the chosen variables. However in cases with small
samples, we suggest to use the union of the results and investigate the collective selection
instead of relying on a particular method. Table 6 lists the taxa found to be significant in
each case, along with how many methods out of the four declared them so and the signs of
association with the response in the final model. See the Supplementary Material Section
S2 for the detailed regression results.

Regarding cattle carcass traits, literature linking the microbiome to those traits is scarce.
However, Krause et al. (2020) reported a positive association between back fat thickness
and the ruminal abundance of Peptococcaceae, which is in line with our study, however,
different than our findings, those authors did not find a correlation between back fat and
Christensenelaceae. Concerning lipid content in the carcass, Krause et al. (2020) found a
negative association between this trait and ruminal abundance of Succinivibrionaceae and
F16, and found a positive association with Coriobacteriaceae.

Microorganisms from the family Succinivibrionaceae ferment carbohydrates to succinate
and acetate (Santos and Thompson, 2014). It has been shown that acetate induces lower
intramuscular adipose tissue lipid and adipocyte volume in beef cattle steers (Smith et al.,
2018). Those findings are in line with our results, given that Succinivibrionaceae abundance
was negatively correlated with the percentage of lipid measured in the carcass (Table 6).
Moreover, this negative correlation was detected by the three and four statistical methods
in two different sample types respectively: ruminal and fecal samples; indicating a strong
biological evidence that Succinivibrionaceae decreases the amount of lipid in beef carcasses.

Table 5: Number of taxa found to be significant by various approaches. The subscripts r, c, f
denote microbiome predictors from rumen, cecum, and feces, respectively.

RFIr RFIc RFIf Backr Backc Backf Lipidr Lipidc Lipidf YGr YGc YGf

GIC 1 1 20 15 26 22 24 24 24 24 26 27
clr-lasso 20 19 19 16 0 19 18 0 18 20 20 22
perm(t) 2 1 1 3 1 1 1 2 3 4 1 2
perm(β) 1 0 1 0 1 1 1 2 2 1 1 2
boot(p) 2 0 2 0 1 0 4 2 3 3 1 0
boot(s) 2 0 1 0 1 1 0 2 3 1 2 2

intersection 1 0 1 0 1 0 0 2 2 0 1 0
union 2 1 2 3 1 1 4 2 4 4 2 2

6 Conclusion

In regression problems with microbiomes as covariates and a key health-related trait as the
response, identifying significantly related predictor bacterial taxa is crucial for uncovering
the intricate biological mechanism. Even though many regression approaches have been
suggested for compositional data, a formal hypothesis testing has not been fully devel-
oped yet. We consider the popular sparse log-contrast regression model in this work. The
classical hypothesis testing methods for this model are not applicable under the HDLSS
situation and non-normal errors. We explored a few non-parametric, resampling-based al-
ternatives for individual regression coefficients testing. Specifically, two permutation tests
and two types of bootstrap confidence intervals are considered. From empirical studies, it
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Table 6: List of bacterial taxa that are found be significantly related to the four responses in
three microbiome data sets. The numbers in the parentheses indicate the number of methods
according to which the associated taxa is found significant. Also shown in the parentheses are
the signs of the associations. For example, Coriobacteriaceae in cecum is found to be positively
associated with Back fat in steers by the all four methods.

rumen cecum feces

RFI
Peptostreptococcaceae (4, −) BS11 (1, −) Lactobacillaceae (4, +)
Bifidobacteriaceae (3, +) BS11 (1, −)

Back fat
Christensenellaceae (1, +) Coriobacteriaceae (4, +) Peptococcaceae (3, −)
Peptococcaceae (1, +)
Others F (1, −)

Lipid

Succinivibrionaceae (3, −) o Bacteroidales (4, −) Streptococcaceae (4, +)
Coriobacteriaceae (1, +) Bifidobacteriaceae (4, +) Succinivibrionaceae (4, −)
Fibrobacteraceae (1, −) o Bacteroidales (3, −)
F16 (1, −)

Yield grade

Peptococcaceae (3, +) Coriobacteriaceae (4, +) Peptococcaceae (3, −)
Others F (3, −) Peptococcaceae (1, −) o Rickettsiales (3, +)
Bifidobacteriaceae (2, +)
Coriobacteriaceae (1, +)

is found that generally the resampling-based methods are as effective at least as existing
approaches or better at detecting signal predictor variables. Since they do not necessarily
agree, we propose to employ an ensemble of methods to make a decision. Application of
this approach to the real microbiome data from steers revealed key bacterial taxa that are
relevant to beef quality traits.

As for the significance of the chosen variables, since we test the significance of individual
variables that are included in the screened model, there is no mathematical guarantee
that the variables that are ultimately selected will still be significant in the final model.
However, we believe there are high chances that they remain significant in the final model.
A heuristic reasoning is that if a variable’s contribution is meaningful in the presence of
the others, it will probably still be significant in the presence of a reduced set of the other
variables. We empirically check out this conjecture in the motivating cattle microbiome
data. Once the final models are determined, we test the variables individually again within
the final model. We have found that for an overwhelming majority of cases, except for only
three cases out of 36, all variables in the final models are statistically significant.
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