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We study extensions of Fréchet means for random objects in the space Sym+(p) of p × p symmetric positive-
definite matrices using the scaling-rotation geometric framework introduced by Jung et al. [SIAM J. Matrix. Anal.
Appl. 36 (2015) 1180-1201]. The scaling-rotation framework is designed to enjoy a clearer interpretation of the
changes in random ellipsoids in terms of scaling and rotation. In this work, we formally define the scaling-rotation
(SR) mean set to be the set of Fréchet means in Sym+(p) with respect to the scaling-rotation distance. Since
computing such means requires a difficult optimization, we also define the partial scaling-rotation (PSR) mean set
lying in the space of eigen-decompositions as a proxy for the SR mean set. The PSR mean set is easier to compute
and its projection to Sym+(p) often coincides with SR mean set. Minimal conditions are required to ensure that
the mean sets are non-empty. Because eigen-decompositions are never unique, neither are PSR means, but we give
sufficient conditions for the sample PSR mean to be unique up to the action of a certain finite group. We also
establish strong consistency of the sample PSR means as estimators of the population PSR mean set, and a central
limit theorem. In an application to multivariate tensor-based morphometry, we demonstrate that a two-group test
using the proposed PSR means can have greater power than the two-group test using the usual affine-invariant
geometric framework for symmetric positive-definite matrices.
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1. Introduction

Recently, much work has been done to advance the statistical analysis of random symmetric positive-
definite (SPD) matrices. Applications in which data arise as SPD matrices include the analysis of
diffusion tensor imaging (DTI) data (Alexander, 2005, Batchelor et al., 2005), multivariate tensor-
based morphometry (TBM) (Lepore et al., 2008, Paquette et al., 2017), and tensor computing (Pennec,
Fillard and Ayache, 2006). In this paper, we consider the setting in which we have a random sample of
SPD matrices and wish to estimate a population mean.

Location estimation is an important first step in the development of many statistical techniques. For
applications in which data are SPD matrices, these techniques include two-sample hypothesis testing
(Schwartzman, Dougherty and Taylor, 2010) for comparing average brain scans from two groups of
interest, principal geodesic analysis (Fletcher et al., 2004) for visualizing major modes of variation
in a sample of SPD matrices, and weighted mean estimation, which has useful applications in diffu-
sion tensor processing, including fiber tracking, smoothing, and interpolation (Batchelor et al., 2005,
Carmichael et al., 2013).

One of the challenges of developing methods for analyzing SPD-valued data is that the positive-
definiteness constraint precludes Sym+(p), the space of p × p SPD matrices, from being a vector sub-
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space of Sym(p), the space of all symmetric p × p matrices. This can be easily visualized for p = 2;
the free coordinates (two diagonal elements and one upper off-diagonal element) of all 2 × 2 SPD
matrices in Sym(2) � R3 constitutes an open convex cone. Hence, conventional estimation or infer-
ential techniques developed for data that vary freely over Euclidean space may not be appropriate for
the statistical analysis of SPD matrices. With this in mind, many location estimation frameworks for
Sym+(p) have been developed in recent years, including the log-Euclidean framework (Arsigny et al.,
2006/07), affine-invariant framework (Fletcher et al., 2004, Pennec, Fillard and Ayache, 2006), log-
Cholesky framework (Lin, 2019), and Procrustes framework (Dryden, Koloydenko and Zhou, 2009,
Masarotto, Panaretos and Zemel, 2019); see Feragen and Fuster (2017) for other examples. Given a
sample of SPD matrices, most of these estimation methods amount to transforming the SPD-valued
observations, averaging in the space of the transformed observations, and then mapping the mean of
the transformed data into Sym+(p). For example, the log-Euclidean method maps each observation into
Sym(p) via the matrix logarithm, computes the sample mean of the transformed observations, and then
maps that mean into Sym+(p) via the matrix exponential function, while the Procrustes size-and-shape
method begins with averaging the Cholesky square roots of observations, and then maps the average L̂
to Sym+(p) as Σ̂ = L̂ L̂T , where AT denotes the transpose of a matrix A.

While these geometric frameworks account for the positive-definiteness constraint of Sym+(p), it is
not clear which, if any, of the log-Euclidean, affine-invariant, or Procrustes size-and-shape frameworks
is most “natural” for describing deformations of SPD matrices. Motivated by the analysis of DTI data,
a setting in which observations are SPD matrices represented as ellipsoids in R3, Jung, Schwartzman
and Groisser (2015) developed a different framework, called the scaling-rotation (SR) framework for
Sym+(p). Under this framework, the distance between SPD matrices X and Y is defined as the minimal
amount of rotation of axes and scaling of axis lengths necessary to deform the ellipsoid associated with
X into the ellipsoid associated with Y . For this, an SPD matrix X is decomposed into eigenvectors and
eigenvalues, which respectively stand for rotations and scalings. The SR framework yields interpola-
tion curves that have desirable properties, including constant rate of rotation and log-linear scaling of
eigenvalues, and it is the only geometric framework (compared to the aforementioned frameworks) to
produce both pure-scaling interpolation curves and pure-rotation curves when the endpoints differ by
pure scaling or pure rotation. While interpolation approaches similar to the SR framework can be found
in Wang et al. (2014) and Collard et al. (2014), only the SR framework addresses the non-uniqueness of
eigen-decompositions (Groisser, Jung and Schwartzman, 2017, 2021). See Feragen and Fuster (2017)
and Feragen and Nye (2020) for a comparison of the SR framework with other geometric frameworks
for SPD matrices.

A major complication in developing statistical procedures using the SR framework is that eigen-
decompositions are not unique. For example, an SPD matrix X = diag(8,3) =

( 8 0
0 3

)
can be eigen-

decomposed into either

X =U1D1UT
1 , U1 =

( 1 0
0 1

)
, D1 =

( 8 0
0 3

)
,

or

X =U2D2UT
2 , U2 =

( 0 −1
1 0

)
, D2 =

( 3 0
0 8

)
.

(There are in fact 4 distinct eigen-decompositions for diag(8,3), if the eigenvector matrices are required
to be orthogonal matrices of positive determinant.) Write (UX,DX ) for an eigen-decomposition (a pair
of eigenvector and eigenvalue matrices) of an SPD matrix X , and let F be the eigen-composition
map, e.g., F (UX,DX ) =UXDXUT

X = X (see Definition 2.1). The SR framework defines the “distance”
between X,Y ∈ Sym+(p) to be dSR(X,Y ) := inf dM ((UX,DX ),(UY ,DY )), where the infimum is taken
over all possible eigen-decompositions of both X and Y , and dM is the (geodesic) distance function on
the space M(p) of eigen-decompositions (see Definition 2.2). Sym+(p) is a stratified space; the stratum
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to which X ∈ Sym+(p) belongs is determined by the eigenvalue-multiplicity type of X , or equivalently
by the topological structure of the fiber F−1(X) (the set of all eigen-decompositions corresponding to
X ∈ Sym+(p)); see Section 2.3. The scaling-rotation distance dSR fails to be a true metric on Sym+(p),
and is difficult to compute because the set we minimize over in the definition of dSR(X,Y ) is a pair of
these fibers (whose topology varies with the strata of X and Y ). In fact, Sym+(p) equipped with dSR is
not a Riemannian manifold; it is only the eigen-decomposition space M(p) that we are endowing with
a Riemannian metric. With these complications in mind, the goal of this paper is to establish location-
estimation methods using the SR framework as a foundation for future methods that will inherit the
interpretability of the framework.

If one of the well-established geometric frameworks, such as the affine-invariant or log-Cholesky
frameworks, is used, then Sym+(p) is understood as a Riemannian manifold with a Riemannian metric
tensor defined on the tangent bundle. The Riemannian metric gives rise to a distance function, say
d, and (Sym+(p),d) is a metric space. For these metric spaces, the Fréchet mean (Fréchet, 1948) is a
natural candidate for a location parameter, and conditions that guarantee uniqueness of Fréchet means,
convergence of empirical Fréchet means to the population counterpart, and central-limit-theorem type
results, are well-known (cf. Afsari, 2011, Bhattacharya and Lin, 2017, Bhattacharya and Patrangenaru,
2003, 2005, Eltzner et al., 2021, Huckemann, 2011a,b, Schötz, 2022).

But in the SR framework, since dSR is not a true metric on Sym+(p), many of the theoretical prop-
erties of Fréchet means (if they are defined) are no longer guaranteed. Moreover, on a practical side,
computing a scaling-rotation (SR) mean, defined as a minimizer over the sum of squared SR distances
to observations, requires discrete optimization in general and is thus challenging to implement. As
a proxy for the SR mean, we define a partial scaling-rotation (PSR) mean on the space of eigen-
decompositions; for a finite sample X1, . . . ,Xn ∈ Sym+(p), the PSR mean set is the set of minimizers

argmin
(U ,D)

1
n

n∑
i=1

{
inf

(UX ,DX )∈F−1(Xi )
dM ((UX,DX ),(U,D))

}2

. (1.1)

See Section 3 for precise definitions and an iterative algorithm for computing a sample PSR mean. The
PSR means can be thought of as a special case of generalized Fréchet means, proposed in Huckemann
(2011b) and studied in Huckemann (2011a), Huckemann and Eltzner (2021), Schötz (2019, 2022). The
PSR means can be mapped to Sym+(p) (via the eigen-composition map F ), and we establish some
sufficient conditions under which the PSR means are equivalent to the SR mean. These conditions are
related to the strata of Sym+(p) in which the sample and means are located.

Another artifact caused by the stratification of Sym+(p) is that the distance function dSR is not
continuous on Sym+(p), and in principle we do not know whether an SR mean is well-defined. We
show that the distance function dSR , the cost function appeared in (1.1) for the PSR means, and their
squares are lower semicontinuous, and thus are measurable, which guarantees that both the SR and PSR
mean sets are well-defined. We also show that SR and PSR mean sets exist, under mild assumptions.

PSR means are never unique, due to the fact that eigen-decompositions are not unique. In the best
case, there are 2p−1p! elements in the PSR mean set for a Sym+(p)-valued sample, corresponding to the
number of distinct eigen-decompositions of any SPD matrix with no repeated eigenvalues. As a result,
if a PSR mean set E (PSR)

n consists of exactly 2p−1p! elements, then the corresponding Sym+(p)-valued
mean, F (E (PSR)

n ) consists of a single element, and we may say that F (E (PSR)
n ) is unique. A sufficient

condition to ensure such uniqueness will be given in Section 4.3 in terms of data-support diameter.
We also show that with only a finite-variance condition the sample PSR mean set is consistent

with the population PSR mean set, in the sense of Bhattacharya and Patrangenaru (2003), following
the now standard technique laid out in Huckemann (2011b) (with modifications required to the fact
that the cost function in (1.1) is not continuous). With additional conditions, needed to ensure the
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equivalence between PSR mean sets and the SR mean, imposed, we conclude that the sample SR mean
set is consistent with the (unique) SR mean. A type of central limit theorem for the PSR mean is also
developed, in which the limiting normal distribution is defined on a tangent space of the space of eigen-
decompositions. See Section 4 for theoretical properties of (partial) SR means, including existence,
uniqueness, and asymptotic results. Although these properties are developed to cope with the unique
challenges (e.g. non-uniqueness of eigen-decompositions and the resulting stratification) coming from
using the SR framework, we believe the course of our technical development will be instructive for
developing statistics in other stratified Riemannian spaces.

Numerical results demonstrate the subtle difference between the SR mean and the PSR mean, and
the advantage of (partial) SR means over other means defined via other geometric frameworks. The
potential advantage of the SR framework with PSR means is further demonstrated in an application
to multivariate TBM for testing the shape difference in lateral ventricular structure in the brains of
pre-term and full-term infants, using data from Paquette et al. (2017). In particular, an approximate
bootstrap test based on PSR means is found to be more powerful than that based on the affine-invariant
means of Pennec, Fillard and Ayache (2006). We conclude with practical advice on the analysis of SPD
matrices and a discussion of potential future directions of research.

We organize the rest of this article as follows. The scaling-rotation geometric framework is reviewed
in Section 2. In Section 3, we introduce the novel partial scaling-rotation (PSR) means and an estima-
tion algorithm. Section 4 is devoted to theoretical properties of the PSR means, including sufficient
conditions for existence and uniqueness, as well as consistency and a central limit theorem. The PSR
means are numerically and visually demonstrated in Section 5, in which we also provide comparisons
to other geometric frameworks for SPD matrices. We summarize our conclusions in Section 6. Tech-
nical details, proofs, and additional lemmas that may be useful in other contexts, are contained in the
Supplementary Material (Jung et al., 2024).

2. The scaling-rotation framework

In this section we provide a brief overview of the scaling-rotation framework (Groisser, Jung and
Schwartzman, 2017, 2021, Jung, Schwartzman and Groisser, 2015) for analyzing SPD-valued data. The
motivation for the scaling-rotation framework is intuitive: Any X ∈ Sym+(p) can be identified with the
ellipsoid with surface coordinates {y ∈ Rp : yT X−1y = 1}, so a measure of distance between X and Y
can be defined as a suitable combination of the minimum amount of rotation of axes and stretching
or shrinking of axes needed to deform the ellipsoid corresponding to X into the ellipsoid associated
with Y . Since the semi-axes and squared semi-axis lengths of the ellipsoid associated with an SPD
matrix are its eigenvectors and eigenvalues, respectively, this scaling-rotation distance is computed on
the space of eigen-decompositions.

2.1. Geometry of the eigen-decomposition space

Recall that any X ∈ Sym+(p) has an eigen-decomposition X = UDUT , where U ∈ SO(p), the space
of p × p rotation matrices, and D ∈ Diag+(p), the space of p × p diagonal matrices possessing pos-
itive diagonal entries. We denote the space of eigen-decompositions as M(p) := SO(p) × Diag+(p).
The Lie groups SO(p) and Diag+(p) carry natural bi-invariant Riemannian metrics gSO and gD+ , de-
fined as follows. The tangent space at U of SO(p) is TU (SO(p)) = {AU : A ∈ so(p)}, where so(p) is the
space of p × p antisymmetric matrices. At an arbitrary point U ∈ SO(p) we define gSO |U (A1,A2) =
− 1

2 tr(A1UT A2UT ) for A1,A2 ∈ so(p), where tr(A) is the trace of the matrix A. The tangent space
TD(Diag+(p)) = {LD : L ∈ Diag(p)} is canonically identified with Diag(p), the set of p × p diago-
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nal matrices, and we define gD+ |D (L1,L2) = tr(L1D−1L2D−1), for L1,L2 ∈ Diag(p). Given eigen-
decompositions (U1,D1) and (U2,D2) of SPD matrices X1 and X2, we measure the distance between
their eigen-decompositions using the following product metric:

Definition 2.1. We define the distance function dM on M(p), with a weighting parameter k > 0, by

d2
M ((U1,D1),(U2,D2)) = kd2

SO(U1,U2) + d2
D+ (D1,D2), (2.1)

where dSO(U1,U2) = 1√
2
‖Log(U2U−1

1 )‖F , dD+ (D1,D2) = ‖Log(D2D−1
1 )‖F , and ‖.‖F denotes the

Frobenius norm.

In Definition 2.1 and (2.2) below, Exp(A) stands for the matrix exponential of A, and Log(R) for
the principal matrix logarithm of R.1 The weighting parameter k is a fixed constant throughout, and
allows for combining two intrinsically incommensurate quantities with different relative weights (cf.
Jung, Schwartzman and Groisser, 2015). Our theoretical results hold for any k > 0, but the choice of
k affects certain results concerning, for instance, the diameter of the support of data. The parameter is
set to k = 1 in all numerical results in this article, but can be adjusted in practice. As an example, if one
wishes to standardize the variability in eigenvectors with respect to the eigenvalues, one may set k to
be the ratio of the (suitably defined) Fréchet variance of eigenvalue matrices to the Fréchet variance of
eigenvector matrices. The function dM is the geodesic distance function determined by the Riemannian
metric gM that we define below.

For a geometric interpretation of the geodesic distance, note that the geodesic distance between
eigen-decompositions (U1,D1) and (U2,D2) equals the length of the M(p)-valued geodesic

γ(U1 ,D1),(U2 ,D2)(t) = (Exp(tLog(U2U−1
1 ))U1,Exp(tLog(D2D−1

1 ))D1) (2.2)

connecting (U1,D1) and (U2,D2), which is a minimal-length smooth curve connecting these two points
when the tangent spaces of M(p) are equipped with the canonical inner product gM = kgSO ⊕ gD+ . The
functions dD+(D1,D2) and dSO(U1,U2) in (2.1) have the following interpretations: dD+ (D1,D2) com-
putes the Euclidean distance between Log(D1) and Log(D2), while dSO(U1,U2) equals the magnitude
of the rotation angle of U2U−1

1 when p = 2,3.
The exponential map at (U,D) ∈ M(p) is Exp(U ,D) : T(U ,D)M(p) → M(p), given by

Exp(U ,D)((AU,LD)) = (Exp(A)U,Exp(L)D). (2.3)

The inverse of the exponential map at (U,D) ∈ M(p), defined for U(U ,D) = {(V,Λ) ∈ M(p) :
‖Log(VUT )‖F < π}, is Log(U ,D) : U(U ,D) → T(U ,D)M(p), and is given by

Log(U ,D)((V,Λ)) = (Log(VUT )U,Log(ΛD−1)D). (2.4)

With the Riemannian metric gM = kgSO ⊕ gD+ , the induced norm on the tangent space T(U ,D)M(p)
satisfies

‖(A1U,L1D) − (A2U,L2D)‖2
(U ,D) =

k
2

tr((A1 − A2)(A1 − A2)T ) + tr((L1 − L2)(L1 − L2)T ),

for any two tangent vectors (A1U,L1D),(A2U,L2D) ∈ T(U ,D)M(p).

1The principal logarithm for rotation matrices is defined on the set {R ∈ SO(p) : R is not an involution}, a dense open subset
of SO(p). When there exists no principal logarithm of R, the notation Log(R) denotes any solution A ∈ so(p) of Exp(A) = R

satisfying that ‖A‖F is the smallest among all such choices of A. For such rare cases, the geodesic (2.2) is not unique, but
‖Log(R)‖F is well defined.
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2.2. Minimal smooth scaling-rotation curves and scaling-rotation distance

Since eigen-decompositions are not unique, any method for computing the distance between SPD ma-
trices using the eigen-decomposition space must take this non-uniqueness into account. To address this,
Jung, Schwartzman and Groisser (2015) proposed the following distance for Sym+(p):

Definition 2.2. Let F : M(p) → Sym+(p) denote the eigen-composition map F (U,D) =UDUT , and
for any X ∈ Sym+(p), let F−1(X) denote the set of eigen-decompositions of X . The scaling-rotation
distance between X ∈ Sym+(p) and Y ∈ Sym+(p) is

dSR(X,Y ) = inf
(UX ,DX )∈F−1(X),
(UY ,DY )∈F−1(Y)

dM ((UX,DX ),(UY ,DY )).

Eigen-decompositions (U∗
X,D

∗
X ) ∈ F −1(X) and (U∗

Y ,D
∗
Y ) ∈ F −1(Y ) form a minimal pair if

dM ((U∗
X,D

∗
X ),(U

∗
Y ,D

∗
Y )) = dSR(X,Y ).

Remark 2.3. Since the sets F−1(X) and F−1(Y ) are compact for any X,Y ∈ Sym+(p), there will always
be a pair of eigen-decompositions of X and Y that form a minimal pair.

Remark 2.4. The function dSR is not a true metric on Sym+(p) since there are instances in which the
triangle inequality fails. It is a semi-metric and invariant under simultaneous matrix inversion, uniform
scaling and conjugation by a rotation matrix (Jung, Schwartzman and Groisser, 2015, Theorem 3.11).
When restricted to the subset of SPD matrices which possess no repeated eigenvalues, dSR is a true
metric (Jung, Schwartzman and Groisser, 2015, Theorem 3.12).

For SPD matrices X,Y and their eigen-decompositions (UX,DX ) ∈ F −1(X), (UY ,DY ) ∈ F −1(Y ),
one can create a smooth scaling-rotation (SSR) curve on Sym+(p) connecting X and Y as χX ,Y (t) =
F (γ(UX ,DX ),(UY ,DY )(t)), where γ(UX ,DX ),(UY ,DY )(t) is a minimal-length geodesic curve defined in
(2.2). If one considers the family of all possible geodesics in (M(p),gM ) from F−1(X) to F−1(Y ),
the scaling-rotation distance equals the length of the shortest geodesics in that family. By definition,
the shortest geodesic (which may not be uniquely defined) connects a minimal pair (U∗

X,D
∗
X ) ∈ F −1(X)

and (U∗
Y ,D

∗
Y ) ∈ F −1(Y ). The weighting parameter k, introduced in Definition 2.1, affects the relative

lengths of these geodesics. Thus, which geodesic becomes the shortest geodesic depends on the value
of k. (See supplementary Section 2 of Jung, Schwartzman and Groisser (2015)). Computing dSR(X,Y )
for any dimension p is straightforward when X and Y both have no repeated eigenvalues, since X
and Y then both have finitely many eigen-decompositions and therefore finitely many connecting SSR
curves, or when one of X,Y is a scaled identity matrix. Formulas for computing dSR(X,Y ) for all pos-
sible eigenvalue-multiplicity combinations of arguments X and Y are provided in Groisser, Jung and
Schwartzman (2017) for p = 2,3.

2.3. The stratification of Sym+(p) and fibers of the eigen-composition map

The space Sym+(p) is naturally stratified by eigenvalue-multiplicity types, identified naturally with
partitions of p. (A partition of p, generally denoted symbolically in the form “k1 + k2 + · · · + kr”, is a
finite non-decreasing sequence of positive integers, called parts of the partition, whose sum is p. The
parts ki of such a partition label eigenvalue-multiplicities; the stratum corresponding to the partition



1558 Jung, Rooks, Groisser and Schwartzman

k1 + k2 + · · ·+ kr has r distinct eigenvalues, whose greatest multiplicity is k1, next-greatest multiplicity
is k2, etc. Only the multiplicities of eigenvalues, not their relative sizes, are relevant to this labeling.)
We will use the notation Stop

p to denote the subset of SPD matrices which have no repeated eigenvalues
(the superscript “top” refers to the “top stratum”); this corresponds to the partition 1 + 1 + · · · + 1. We
also use the notation Slwr

p := Sym+(p) \ Stop
p , for the union of all “lower” strata, and Sbot

p ⊂ Slwr
p denotes

the set of SPD matrices having just a single, multiplicity-p eigenvalue. If X,Y ∈ Sym+(p) are in the
same stratum, then F−1(X) and F−1(Y ) are diffeomorphic, as we elaborate below.

Let Sp be the group of permutations of {1,2, . . . ,p}. For a permutation π ∈ Sp and D ∈ Diag+(p), the
natural left action of Sp on Diag+(p) is given by permuting the diagonal entries of D. We call a p × p
matrix P a signed-permutation matrix if for some π ∈ Sp the entries of P satisfy Pi j = ±δi,π(j). We
call such P even if det(P) = 1. The set G(p) of all such even signed-permutation matrices has exactly
2p−1p! elements, and is a matrix subgroup of SO(p). The natural left-action of G(p) on M(p) is given
by

h · (U,D) := (Uh−1,h · D), (2.5)

where h ∈ G(p) and h ·D := hDh−1. The action of h on (U,D) represents the simultaneous permutation
(by the unsigned permutation associated with h) of columns of U and diagonal elements of D, and the
sign-changes of the columns of U. The identity element of G(p) is Ip .

It is shown in Jung, Schwartzman and Groisser (2015) that the fiber F−1(X)—that is, the set of
eigen-decompositions of X—can be expressed as

F−1(X) = {h · (UR,D) : R ∈ GD,h ∈ G(p)}, (2.6)

with any (U,D) ∈ F −1(X), where GD = {R ∈ SO(p) : RDRT = D}. Thus, the action of G(p) on M(p)
is fiber-preserving.

The topological structure of the fiber F−1(X) depends on the stratum to which X belongs. If X ∈ Stop
p ,

then for any eigen-decomposition (U,D) ∈ F −1(X), the orbit

G(p) · (U,D) = {h · (U,D) : h ∈ G(p)} (2.7)

is exactly F−1(X), the set of eigen-decompositions of X . Intuitively, any eigen-decomposition of X ∈
Stop
p can be obtained from any other by a sign-change of eigenvectors and a simultaneous permutation

of eigenvectors and eigenvalues. In contrast, if X ∈ Sbot
p (i.e., X is a scaled identity matrix), then GX =

SO(p) and h · X = X for all h ∈ G(p), thus the fiber of F at X is F−1(X) = SO(p) × {X}. Fibers other
than these two extremes are more complicated to describe, but a complete characterization of all the
fibers of F can be found in Groisser, Jung and Schwartzman (2017).

3. Location estimation under the scaling-rotation framework

3.1. Fréchet mean

An approach often used for developing location estimators for non-Euclidean metric spaces is Fréchet
mean estimation (Fréchet, 1948), in which estimators are derived as minimizers of a metric-dependent
sample mean-squared error.
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Definition 3.1. Let M be a metric space with metric ρ and suppose that X,X1, . . . ,Xn are i.i.d. M-
valued random variables with induced probability measure P on M . The population Fréchet mean set
is

argmin
C∈M

∫
M
ρ2(X,C)P(dX).

The sample Fréchet mean set is

argmin
C∈M

1
n

n∑
i=1

ρ2(Xi,C).

Examples of location estimators that have been developed for Sym+(p) using the sample Fréchet
mean estimation framework include the log-Euclidean mean (Arsigny et al., 2006/07), affine-invariant
mean (Fletcher et al., 2004, Pennec, Fillard and Ayache, 2006), Procrustes size-and-shape mean (Dry-
den, Koloydenko and Zhou, 2009), and the log-Cholesky average (Lin, 2019). Below, we allow our-
selves to use the “Fréchet mean” terminology of Definition 3.1 when the metric space (M, ρ) is replaced
by the semi-metric space (Sym+(p),dSR).

3.2. Scaling-rotation means

We now define the population and sample scaling-rotation mean sets, consisting of the Fréchet means of
SPD matrices under the scaling-rotation framework. Let P be a Borel probability measure on Sym+(p),
and X1, . . . ,Xn be deterministic data points in Sym+(p). Note that Borel measures on Sym+(p) include
both discrete and absolutely continuous measures, as well as mixtures of those.

Definition 3.2. The population scaling-rotation (SR) mean set with respect to P is

E (SR) := argmin
S∈Sym+(p)

f (SR)(S), f (SR)(S) =
∫

Sym+(p)
d2
SR(X,S)P(dX). (3.1)

Given X1, . . . ,Xn ∈ Sym+(p), the sample SR mean set is

E (SR)
n := argmin

S∈Sym+(p)
f (SR)
n (S), f (SR)

n (S) = 1
n

n∑
i=1

d2
SR(Xi,S).

Since, for some S ∈ Sym+(p), the function dSR(·,S) : Sym+(p) → R has discontinuities (see Section
A of the Supplementary Material (Jung et al., 2024)), we must address whether the objective function
f (SR) of (3.1) is well-defined. We defer this discussion to Section 4.1.

Locating a sample SR mean can be recast as solving a difficult constrained optimization problem on
M(p)n since

1
n

n∑
i=1

d2
SR(Xi,S) =

1
n

n∑
i=1

d2
M ((U∗

i ,D
∗
i ),(U

∗,i
S
,D∗,i

S
)), (3.2)

where for each i = 1, . . . ,n, (U∗
i ,D

∗
i ) ∈ F −1(Xi) and (U∗,i

S
,D∗,i

S
) ∈ F −1(S) are an arbitrary minimal pair.

Due to the non-uniqueness of eigen-decompositions, there may be many pairs of eigen-decompositions
of Xi and S which form a minimal pair.
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However, when S ∈ Stop
p the scaling-rotation distance simplifies to

dSR(X,S) = inf
(UX ,DX )∈F−1(X)

dM ((UX,DX ),(US,DS)), (3.3)

where (US,DS) is any eigen-decomposition of S. In this case, dSR(X,S) is easier to compute since
one can select an arbitrary eigen-decomposition (US,DS) of S and then determine the infimum of
the distances between (US,DS) and the eigen-decompositions of X . If S has repeated eigenvalues (or,
equivalently, S is in a lower stratum), this simplification does not hold in general; there may be no
eigen-decomposition of S that is at minimal distance from F−1(Xi) simultaneously for all i.

From the simplification in (3.3), we propose to solve for minimizers of the simplified objective
function

(U,D) 	→ 1
n

n∑
i=1

inf
(UX ,DX )∈F−1(Xi )

d2
M ((UX,DX ),(U,D)),

where the argument (U,D) is an arbitrarily chosen eigen-decomposition of the argument S from (3.2).
To formally define this simplified optimization problem, we first define the following measure of

distance between an SPD matrix and a given eigen-decomposition of another SPD matrix:

Definition 3.3. The partial scaling-rotation (PSR) distance is the map dPSR : Sym+(p) × M(p) →
[0,∞) given by

dPSR(X,(U,D)) = inf
(UX ,DX )∈F−1(X)

dM ((UX,DX ),(U,D)).

It can be checked from the definitions that for any X ∈ Sym+(p) and any (U,D) ∈ M(p)

dSR(X,F (U,D)) ≤ dPSR(X,(U,D)), (3.4)

and by (3.3), the equality in (3.4) holds if F (U,D) ∈ Stop
p .

Definition 3.4. The population and sample partial scaling-rotation (PSR) mean sets are subsets of
M(p) and are defined respectively by E (PSR) := argmin(U ,D)∈M(p) f (PSR)(U,D) and E (PSR)

n :=

argmin(U ,D)∈M(p) f (PSR)
n (U,D), where

f (PSR)(U,D) =
∫

Sym+(p)
d2
PSR(X,(U,D))P(dX), (3.5)

f (PSR)
n (U,D) = 1

n

n∑
i=1

d2
PSR(Xi,(U,D)).

In Sections 4.1 and 4.2 we show that for any Borel probability measure on Sym+(p), the population
mean set E (PSR) is well-defined and non-empty. There, we also show that both E (PSR)

n and E (SR)
n are

non-empty for any sample X1, . . . ,Xn. An iterative algorithm to compute a sample PSR mean is given
in Section 3.3.

The PSR means lie in M(p) and can be mapped to Sym+(p) via the eigen-composition map. The
PSR mean set can be thought of as yielding an approximation of the SR mean set, and it is of interest
to know when the two sets are “equivalent”. The theorem below provides conditions under which
E (PSR) ⊂ M(p) is equivalent to E (SR) ⊂ Sym+(p) in the sense that every member of E (PSR) is an
eigen-decomposition of a member of E (SR) and vice-versa.
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Theorem 3.5. Suppose that f (PSR)(U,D) <∞ for some (U,D) ∈ M(p). If E (SR) ⊂ Stop
p , then

E (PSR) = F−1(E (SR)) and F (E (PSR)) = E (SR).

The statement above holds when E (SR) and E (PSR) are replaced by E (SR)
n and E (PSR)

n , respectively.

The previous theorem suggests that in many realistic situations, there may be no cost to using the
PSR means in place of the SR means, which are more difficult to compute in practice. These realistic
situations include the case where all SR means have distinct eigenvalues. If minimizing f (SR) or f (SR)

n

over Slwr
p (the union of lower strata of Sym+(p)) is feasible, then Theorem 3.6 below can be used to tell

whether a PSR mean is equivalent to an SR mean.
For the rest of the paper, we generally use the notation m rather than (U,D) for an arbitrary element

of M(p) if there is no explicit need for writing out the eigenvector and eigenvalue matrices separately.

Theorem 3.6. Let mPSR ∈ M(p) be a PSR mean with respect to a probability measure P on Sym+(p).

(a) If f (SR)(F (mPSR)) ≤ minS∈Slwr
p

f (SR)(S), then F (mPSR) ∈ E (SR).

(b) If f (SR)(F (mPSR)) >minS∈Slwr
p

f (SR)(S), then F (mPSR) � E (SR) and E (SR) ⊂ Slwr
p .

Let m̂PSR ∈ M(p) be a sample PSR mean with respect to a given sample X1, . . . ,Xn ∈ Sym+(p). Simi-
larly to the statements above,

(c) If f (SR)
n (F (m̂PSR)) ≤ minS∈Slwr

p
f (SR)
n (S), then F (m̂PSR) ∈ E (SR)

n .

(d) If f (SR)
n (F (m̂PSR)) >minS∈Slwr

p
f (SR)
n (S), then F (m̂PSR) � E (SR)

n and E (SR)
n ⊂ Slwr

p .

We remark that for p = 2, Slwr
p = {cI2 : c > 0} and the function f (SR)

n can be efficiently minimized
over Slwr

p by a one-dimensional numerical optimization.
A key condition that enables us to ensure the equivalence of the PSR means to SR means is that all

SR means have no repeated eigenvalues (i.e., E (SR) ⊂ Stop
p ). This condition, of course, depends on the

distribution P. Below, we give a condition on P sufficient to ensure that E (SR) ⊂ Stop
p . To express this

condition, let δ : Sym+(p) → [0,∞) be δ(S) = inf{dSR(S,S′) : S′ ∈ Slwr
p }. Thus, δ(S) is a “distance”

from S to lower strata of Sym+(p). (Because Slwr
p is closed, δ(S) > 0 for any S ∈ Stop

p .)

Theorem 3.7. Let X be a Sym+(p)-valued random variable with distribution P. Assume that there
exists S0 ∈ Stop

p and r ∈ (0, δ(S0)/3) such that

P(dSR(X,S0) ≤ r) = 1.

Then E (SR) ⊂ Stop
p . As a corollary, if X1, . . . ,Xn ∈ Sym+(p) and there exists S0 ∈ Stop

p and r ∈
(0, δ(S0)/3) satisfying dSR(Xi,S0) ≤ r for i = 1, . . . ,n, then E (SR)

n ⊂ Stop
p .

The condition of Theorem 3.7 requires that the support of P be sufficiently far from lower strata of
Sym+(p). Since lower strata consist of SPD matrices with two or more equal eigenvalues, this condition
requires that all SPD matrices in the support have sufficiently large gaps between eigenvalues. But this
condition is not necessary for the conclusion. The condition, however, cannot be weakened to the
condition that all data lie in Stop

p (for finite samples); there are examples in which this weaker condition
is met, but E (SR)

n ⊂ Slwr
p (see numerical examples in Section C.1 of the Supplementary Material (Jung

et al., 2024)).
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3.3. Sample PSR mean estimation algorithm

Given a sample X1, . . . ,Xn ∈ Sym+(p), we propose an algorithm for approximating a member of
E (PSR)
n , that is to find a minimizer of f (PSR)

n . The algorithm is similar to the generalized Procrustes
algorithm (Gower, 1975).

Procedure 3.8 (Sample PSR Mean). Set tolerance ε > 0 and pick initial guess (Û(0), D̂(0)) ∈ M(p).
Set j = 0.

Step 1. For i = 1, . . . ,n, find (U(j)
i ,D

(j)
i ) ∈ F −1(Xi) that has the smallest geodesic distance from

(Û(j), D̂(j)).
Step 2. Compute (Û(j+1), D̂(j+1)) ∈ argmin(U ,D)∈M(p)

1
n

∑n
i=1 d2

M ((U(j)
i ,D

(j)
i ),(U,D)).

If | f (PSR)
n (Û(j+1), D̂(j+1)) − f (PSR)

n (Û(j), D̂(j))| > ε, increment j and repeat Steps 1 and 2. Otherwise,
(ÛPSR, D̂PSR) = (Û(j+1), D̂(j+1)) is the approximate sample PSR mean produced by this algorithm,
given the tolerance ε and initial guess (Û(0), D̂(0)).

Remark 3.9. The above procedure will always terminate since each step of the procedure reduces the
value of the objective function, i.e., f (PSR)

n (Û(j+1), D̂(j+1)) ≤ f (PSR)
n (Û(j), D̂(j)) for any j ≥ 0, and

f (PSR)
n (U,D) is bounded below by zero for any (U,D) ∈ M(p).

If Xi lies in Stop
p , performing Step 1 will simply require searching over the 2(p−1)p! distinct eigen-

decompositions of Xi to find one that attains the minimal geodesic distance from (Û(j), D̂(j)). Solving
for the minimizing eigen-decomposition of Xi is also easy if Xi is a scaled identity matrix (Xi ∈ Sbot

p ),
since the fact that Xi = cIp =U(cIp)UT for any U ∈ SO(p) implies that (Û(j),cIp) will be the eigen-
decomposition of Xi with minimal geodesic distance from (Û(j), D̂(j)). Determining the minimizing
eigen-decomposition of Xi when p = 3 and Xi has two distinct eigenvalues can be done by com-
paring three closed-form expressions, as described in Groisser, Jung and Schwartzman (2017). For
p > 3, there are no known corresponding closed-form expressions for determining a minimizing eigen-
decomposition of Xi ∈ Slwr

p \ Sbot
p .

The optimization problem over M(p) in Step 2 can be divided into separate minimization problems
over Diag+(p) and SO(p):

D̂(j+1) = argmin
D∈Diag+(p)

1
n

n∑
i=1

‖Log(D(j)
i ) − Log(D)‖2

F ,

Û(j+1) ∈ argmin
U∈SO(p)

1
n

n∑
i=1

‖Log(U(j)
i U−1)‖2

F .

The solution D̂(j+1) is uniquely given by D̂(j+1) = Exp{ 1
n

∑n
i=1 Log(D(j)

i )}, while Û(j+1) usually must
be approximated via numerical procedures. It is shown in Manton (2004) that when the rotation ma-
trices U(j)

1 , . . . ,U
(j)
n lie within a geodesic ball of radius π

2 , there is a unique minimizer Û(j+1), and this
minimizer can be approximated by a globally convergent gradient descent algorithm on (SO(p),gSO).
It is highly unlikely that one would be able to de-couple estimation of the eigenvalue and eigenvector
means in this manner while solving for a sample SR mean.
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4. Theoretical properties of scaling-rotation means

4.1. Lower semicontinuity and other properties of dSR and dPSR

One of the complications in using the SR framework is that the symmetric function dSR is not continu-
ous in either variable (see Section A of the Supplementary Material (Jung et al., 2024) for an example).
Unfortunately, dPSR is also not continuous at every point of Sym+(p) × M(p), as illustrated by the
following example. Let X(ε) := diag(eε,e−ε) and (U,D) = (R(θ), I2), where R(θ) is the 2 × 2 rotation
matrix corresponding to a counterclockwise rotation by angle θ. Then for any ε � 0 and 0 < |θ | < π/4,

dPSR(X(ε),(U,D)) = (kθ2 + 2ε2)1/2,

which implies that dPSR(X(ε),(U,D)) →
√

k |θ | as ε→ 0. Since dPSR(X(0),(U,D)) = 0, it follows
that dPSR is not continuous at (I2,(U,D)), and therefore dPSR is not continuous on Sym+(p) × M(p).
Nevertheless, dPSR is continuous with respect to the second variable in M(p), and is jointly continuous
on Stop

p × M(p), as we state below.

Lemma 4.1.

(a) dPSR is continuous on Stop
p × M(p).

(b) For each S ∈ Sym+(p), the function dPSR(S, ·) : M(p) → [0,∞) is Lipschitz, with Lipschitz-
constant 1. That is, for all m1,m2 ∈ M(p),

|dPSR(S,m1) − dPSR(S,m2)| < dM (m1,m2).

In particular, dPSR(S, ·) is uniformly continuous for each S.

Since both dSR and dPSR are not continuous, in principle we do not know yet whether the integrals
of d2

SR(·,Σ) and d2
PSR(·,(U,D)), for Σ ∈ Sym+(p) and (U,D) ∈ M(p), in Definitions 3.2 and 3.4, are

well defined. A related question is: under which conditions do the population (partial) scaling-rotation
means exist? A key observation in answering these questions is that these functions d2

SR(·,Σ) and
d2
PSR(·; (U,D)) are lower semicontinuous (LSC). (Recall that a function f : X → R, where X is a

topological space, is LSC at a point x0 ∈ X if for all ε > 0, there exists an open neighborhood U of x0
such that f (x) > f (x0) − ε for all x ∈ U. If f is LSC at each x0 ∈ X, we say that f is LSC.)

Definition 4.2. Let X be a topological space and Y be a set, and let f : X ×Y → R.

(a) We say that f is LSC in its first variable, uniformly with respect to its second variable, if for all
x0 ∈ X and ε > 0, there exists an open neighborhood U of x0 such that

f (x, y) > f (x0, y) − ε for all x ∈ U and all y ∈ Y. (4.1)

(b) If Y is also a topological space, we say that f is LSC in its first variable, locally uniformly with
respect to its second variable, if every y0 ∈ Y has an open neighborhood V such that f |X×V is
LSC in the first variable, uniformly with respect to the second. If Y is locally compact, this prop-
erty is equivalent to: for every compact set K ⊂ Y, f |X×K is LSC in the first variable, uniformly
with respect to the second.

Any finite-dimensional manifold (in particular, M(p)) is locally compact.
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Theorem 4.3.

(a) Let S0 ∈ Sym+(p), and m0 ∈ M(p). Then the functions d2
SR(·,S0) and d2

PSR(·,m0) and their
square-roots are LSC.

(b) The functions dSR(·, ·), d2
SR(·, ·), dPSR(·, ·) and d2

PSR(·, ·) are LSC in the first variable, locally
uniformly with respect to the second variable.

In this theorem, part (a) is actually redundant; it is a special case of part (b), with the one-point set
{S0} playing the role of the compact set in Definition 4.2(b). Also, for dSR and d2

SR , the terms “first
variable” and “second variable” in Theorem 4.3 can be interchanged, since dSR is symmetric. Verifying
Theorem 4.3 requires substantial background work regarding the geometry of the eigen-decomposition
space M(p) and the eigen-composition map F . The following lemma is the key technical result used
in proving Theorem 4.3. The radius-r open ball centered at m0 ∈ M(p) is BdM

r (m0) := {m ∈ M(p) :
dM (m,m0) < r}.

Lemma 4.4. Let K ⊂ Sym+(p) be a compact set. Let ε > 0 and let S ∈ Sym+(p). There exists δ1 =
δ1(S,K, ε) > 0 such that for all S0 ∈ K, all m0 ∈ F −1(S0), all m ∈ F −1(S), and all S′ ∈ F

(
BdM
δ1

(m)
)
,

dSR(S′,S0)2 > dSR(S,S0)2 − ε (4.2)

and

dPSR(S′,m0)2 > dPSR(S,m0)2 − ε . (4.3)

Lemma 4.4 does not immediately imply that dSR(·,S0) or dPSR(·,m0) is LSC at S, because the set
F (BdM

δ1
(m)) in the lemma is not always open in Sym+(p) (F does not map arbitrary open sets to open

sets). However, there exists an open ball centered at F (m) in Sym+(p) with radius smaller than δ1
that is contained in F (BdM

δ1
(m)) (Corollary B.14). The background and our proofs of these supporting

results and Theorem 4.3 are provided in Section B.2 of the Supplementary Material (Jung et al., 2024).
Semicontinuous real-valued functions are (Borel) measurable, so an immediate consequence of The-

orem 4.3(a) is that the integrals defining the objective functions f (SR) and f (PSR) for the population
(partial) scaling-rotation means exist in R∪ {∞}. This establishes the following.

Proposition 4.5. Let P be any Borel probability measure on Sym+(p).

(i) For any S ∈ Sym+(p), the integral
∫

Sym+(p) d2
SR(·,S)dP is well-defined in [0,∞].

(ii) For any m ∈ M(p), the integral
∫

Sym+(p) d2
PSR(·,m)dP is well-defined in [0,∞].

(Proof for Proposition 4.5 is omitted.)
A finite-variance condition for the random variable X ∈ Sym+(p) with respect to the (partial) scaling-

rotation distance (already needed to define E (SR) and E (PSR)) is required to establish (semi-)continuity
of f (SR) and f (PSR), non-emptiness of E (SR) and E (PSR) (discussed in Section 4.2), and relationships
between these sets (in Section 3.2). For a probability measure P on Sym+(p), we say P has finite SR-
variance if f (SR)(S) <∞ for all S ∈ Sym+(p). Likewise, P has finite PSR-variance if f (PSR)(U,D) <
∞ for all (U,D) ∈ M(p). The following result shows that such a condition needs to be assumed only at
a single point, rather than at all points.

Lemma 4.6. Let P be a Borel probability measure on Sym+(p) and let f (PSR) and f (SR) be the
corresponding objective functions defined in equations (3.5) and (3.1).
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(a) If f (PSR)(m) <∞ for some m ∈ M(p), then f (PSR)(m) <∞ for any m ∈ M(p), and f (SR)(S) <
∞ for any S ∈ Sym+(p).

(b) If f (SR)(S) <∞ for some S ∈ Sym+(p), then f (SR)(S) <∞ for any S ∈ Sym+(p).

By (3.4), any probability measure with finite PSR-variance always has finite SR variance.
We conclude this background section by answering a natural question: Are the SR and PSR mean

functions f (SR) and f (PSR) (semi-)continuous?

Lemma 4.7. Let P be a Borel probability measure on Sym+(p).

(i) If P is supported in a compact set K ⊂ Sym+(p), then f (SR) : Sym+(p) → R is LSC.
(ii) If P has finite PSR-variance, then f (PSR) : M(p) → R is continuous.

The preceding result also implies that for any finite sample X1, . . . ,Xn, f (SR)
n (or f (PSR)

n ) is LSC
(or continuous, respectively). Lemma 4.7 plays an important role in developing theoretical properties
of SR and PSR means, which we present in the subsequent sections.

4.2. Existence of scaling-rotation means

The SR mean set E (SR) consists of the minimizers of the function f (SR). To prove existence of SR
means (or, equivalently, non-emptiness of E (SR)) we use the fact that any LSC function on a compact
set attains a minimum. For this purpose, we first verify coercivity of f (SR) (and f (PSR)).

Proposition 4.8. Let P be a Borel probability measure on Sym+(p).

(a) There exists a compact set K ⊂ Sym+(p) such that

inf
S∈Sym+(p)

f (SR)(S) = inf
S∈K

f (SR)(S). (4.4)

(b) There exists a compact set K̃ ⊂ M(p) such that

inf
m∈M(p)

f (PSR)(m) = inf
m∈K̃

f (PSR)(m). (4.5)

Proposition 4.8 says that f (SR) (and f (PSR), respectively) is coercive, i.e. uniformly large outside
some compact set, and, under the finite-variance condition, has a (non-strictly) smaller value some-
where inside that compact set. Using this fact and the lower semicontinuity of f (SR) (respectively,
f (PSR)), we show in Theorem 4.9 that the SR and PSR mean sets are non-empty. In this theorem, the
bounded support condition for P is used only to ensure the lower semicontinuity of f (SR).

Theorem 4.9. Let P be a Borel probability measure on Sym+(p).

(a) If P is supported on a compact set, then E (SR) �∅.
(b) If P has finite PSR-variance, then E (PSR) �∅.

Since the conditions of Theorem 4.9 are met for any empirical measure defined from a finite set
{X1, . . . ,Xn} ⊂ Sym+(p), a corollary of the population SR mean result is the existence of sample SR
means:



1566 Jung, Rooks, Groisser and Schwartzman

Corollary 4.10. For any finite n, and any X1, . . . ,Xn ∈ Sym+(p), E (SR)
n �∅ and E (PSR)

n �∅.

Remark 4.11. For any Borel-measurable Sym+(p)-valued random variable with finite PSR-variance,
the PSR mean set E (PSR) is closed. In particular, every sample PSR mean set is closed. To verify
this, recall from Lemma 4.7 that f (PSR) is continuous. The PSR mean set is a level set of a continuous
function, and therefore is closed. Moreover, as seen in Proposition 4.8, the closed set E (PSR) is a subset
of a compact set, thus is compact as well.

4.3. Uniqueness of PSR means

Much work has been done on the question of uniqueness of the Fréchet mean of Riemannian manifold-
valued observations. It is known that the Fréchet mean is unique as long as the support of the probability
distribution lies within a geodesic ball of a certain radius (see, for example, Afsari (2011)). Although
dSR is not a geodesic distance on Sym+(p), we can obtain a similar result for a kind of uniqueness of
the PSR mean.

For any X ∈ Sym+(p), recall from (2.6) that F−1(X) = {h · (UR,D) : R ∈ GD,h ∈ G(p)} for an eigen-
decomposition (U,D) of X . Since the finite group G(p) acts freely and isometrically on M(p), for any
h ∈ G(p) and m ∈ M(p),

dPSR(X,m) = inf
R∈GD ,h′ ∈G(p)

dM (h′ · (UR,D),m)

= inf
R∈GD ,h ·h′ ∈G(p)

dM (h · h′ · (UR,D),h · m) = dPSR(X,h · m).

For a sample X1, . . . ,Xn ∈ Sym+(p), we have thus

f (PSR)
n (m) = 1

n

n∑
i=1

d2
PSR(Xi,m) = 1

n

n∑
i=1

d2
PSR(Xi,h · m) = f (PSR)

n (h · m) (4.6)

for any h ∈ G(p) and m ∈ M(p). It follows from (4.6) that for any m ∈ E (PSR)
n , the remaining members

of its orbit G(p) · m (see (2.7)) also belong to E (PSR)
n . Thus, E (PSR)

n will contain at least 2p−1p! el-
ements. In the case where E (PSR)

n only contains 2p−1p! elements (necessarily belonging to the same
orbit), we will say that the sample PSR mean is unique up to the action of G(p). The notion of unique-
ness (up to the action of G(p)) for the population PSR mean in E (PSR) is defined similarly.

The following lemma yields a useful lower bound on the distance between distinct eigen-decom-
positions of an SPD matrix in Stop

p . (Note that for any X ∈ Slwr
p , the set of eigen-decompositions of X is

not discrete, so two eigen-decompositions of X may be arbitrarily close to each other.)

Lemma 4.12.
(a) For any (U,D) ∈ M(p) and for any h ∈ G(p) \ {Ip},

dM ((U,D),h · (U,D)) ≥
√

kβG(p)

where βG(p) :=minh∈G(p)\{Ip } dSO(Ip,h) =minh∈G(p)\{Ip }
1√
2
‖Log(h)‖F .

(b) The quantity βG(p) satisfies βG(p) ≤ π
2 for any p ≥ 2.

(c) For any X ∈ Stop
p , any two distinct eigen-decompositions (UX,DX ) and (U ′

X,D
′
X ) of X satisfy

dM ((UX,DX ),(U ′
X,D

′
X )) ≥

√
kβG(p).
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Remark 4.13. It is easily checked that βG(p) = π
2 when p = 2,3.

In Theorem 4.15 below, we provide a sufficient condition for uniqueness (up to the action of G(p))
of the PSR means. In preparation, we first provide a sufficient condition for a distribution on M(p) to
have a unique Fréchet mean. Recall that (M(p),gM ) is a Riemannian manifold, which in turn implies
that (M(p),dM ) is a metric space. The Fréchet mean set for a probability distribution P on M(p) is thus
well-defined.

Lemma 4.14. Let P̃ be a Borel probability measure on M(p). Suppose that supp(P̃), the support of P̃,
satisfies

supp(P̃) ⊆ BdM
r (m0) (4.7)

for some r ≤
√

kβG(p) and some m0 ∈ M(p). Then there exists a unique Fréchet mean m̄(P̃) :=
argminm∈M(p)

∫
M(p) d2

M (X̃,m)P̃(dX̃) of P, and m̄(P̃) ∈ BdM
r (m0).

Similarly to Lemma 4.14, if a deterministic sample m1, . . . ,mn ∈ M(p) lies in BdM
r (m0) (i =

1, . . . ,n) for some r ≤
√

kβG(p) and m0 ∈ M(p), then the sample Fréchet mean m̄ := argminm∈M(p)
1
n

∑n
i=1 d2

M (mi,m) is unique and lies in BdM
r (m0).

Theorem 4.15. Suppose the probability measure P on Sym+(p) is absolutely continuous with respect
to volume measure and that for two independent Sym+(p)-valued random variables X1,X2 whose dis-
tribution is P,

P(dSR(X1,X2) < r ′cx) = 1, where r ′cx :=

√
kβG(p)

4
. (4.8)

Then the population PSR mean set E (PSR) is unique up to the action of G(p).

The number r ′cx is a lower bound on the regular convexity radius of the quotient space M(p)/G(p)
with the induced Riemannian structure, as shown in Groisser, Jung and Schwartzman (2023). This
ensures that a ball in M(p)/G(p) with radius less than r ′cx is convex. The quotient space M(p)/G(p)
“sits” between M(p) and Sym+(p); any X ∈ Stop

p coincides with an element in M(p)/G(p), but there
are multiple (in fact, infinitely many) elements in M(p)/G(p) corresponding to any X ∈ Slwr

p (cf. (2.6)).
Lemma 4.12 shows that r ′cx ≤

√
kπ/8. In contrast, the regular convexity radius of (M(p),gM ) is

√
kπ/2,

which is much larger than r ′cx . Even though we work with the eigen-decomposition space M(p), in
Theorem 4.15 we require data-support diameter at most r ′cx <

√
kπ/2 since, if dSR(S1,S2) ≥ r ′cx for

some S1,S2 ∈ Sym+(p), then there may be two or more eigen-decompositions of S1 that are both closest
to an eigen-decomposition of S2.

The assumption of absolute continuity of P in Theorem 4.15 enables us to restrict our attention to
the probability-1 event for which the random variables lie in the top stratum Stop

p of Sym+(p), since the
complement of Stop

p has volume zero in Sym+(p). Corollary 4.16 below explicitly states this restriction
as a sufficient condition for the uniqueness of sample PSR means of a deterministic sample. We also
show that the estimation procedure (Procedure 3.8) will yield the unique (up to the action of G(p))
sample PSR mean.

Corollary 4.16. Assume X1, . . . ,Xn ∈ Stop
p . If

dSR(Xi,Xj ) < r ′cx (4.9)
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for all i, j = 1, . . . ,n, then

(a) the sample PSR mean is unique up to the action of G(p);
(b) choosing an eigen-decomposition of any observation from the sample as the initial guess will

lead Procedure 3.8 to converge to the sample PSR mean after one iteration.

Remark 4.17. The data-diameter condition (4.9) in Corollary 4.16 is satisfied under either of the fol-
lowing two conditions (in the presence of the assumption Xi ∈ Stop

p ):

(i) There exists an S0 ∈ Stop
p such that dSR(S0,Xi) < r ′cx/2 for all i = 1, . . . ,n.

(ii) There exists an m ∈ M(p) such that dPSR(Xi,m) < r ′cx/2 for all i = 1, . . . ,n.

Similarly, the condition that dSR(X1,X2) < r ′cx almost surely in Theorem 4.15 is guaranteed by either
(i) or (ii) above, when the latter two conditions are modified probabilistically. In condition (i) above,
it is necessary for the center of the open ball (data support) to lie in the top stratum, due to the fact
that the functions dSR(·,Xi) are, in general, only LSC (not continuous) at points belonging to Slwr

p .
For an S0 ∈ Slwr

p , even if a condition dSR(S0,Xi) < ε (i = 1, . . . ,n) is satisfied for arbitrarily small ε ,
dSR(Xi,Xj ) may be larger than r ′cx . Proof of the statements given in this remark can be found in the
Supplementary Material (Jung et al., 2024).

If the data-support is small enough to satisfy (4.8) and also is far from the lower stratum (satisfying
the conditions in Theorem 3.7), then the SR mean is unique, as the following corollary states.

Corollary 4.18. Let X be a Sym+(p)-valued random variable following the distribution P. Assume that
there exist S0 ∈ Stop

p and r < min{δ(S0)/3,r ′cx/2} satisfying P(dSR(S0,Xi) ≤ r) = 1. Then, (i) the PSR
mean is unique up to the action of G(p), (ii) E (SR) ⊂ Stop

p , and (iii) E (SR) = F (E (PSR)) is a singleton
set.

4.4. Asymptotic properties of the sample PSR means

This subsection addresses two aspects of the asymptotic behavior of the sample PSR mean E (PSR)
n :

(i) strong consistency of E (PSR)
n with the population PSR mean set E (PSR) and (ii) the large-sample

limiting distribution of a sample PSR mean. Much work has been done to establish consistency and cen-
tral limit theorem-type results for sample Fréchet means on Riemannian manifolds and metric spaces
(Bhattacharya and Patrangenaru (2003), Bhattacharya and Patrangenaru (2005), Bhattacharya and Lin
(2017), Eltzner and Huckemann (2019)). Estimation of the PSR mean does not fit into the context of
estimation on Riemannian manifolds or metric spaces since the sample space Sym+(p) and parame-
ter space M(p) are different. Moreover, as we have seen, the PSR means are never unique. With this
in mind, we apply the framework of generalized Fréchet means on general product spaces in Hucke-
mann (2011a) and Huckemann (2011b) to our PSR mean estimation context, enabling us to establish
conditions for strong consistency and for a central limit theorem.

We now establish a strong-consistency result for EPSR
n . Throughout this subsection, let X,X1, . . .

be independent random variables mapping from a complete probability space (Ω,A,P) to Sym+(p)
equipped with its Borel σ-field, and let P be the induced Borel probability measure on Sym+(p). The
sets E (PSR) and E (PSR)

n denote the population and sample PSR-mean sets defined by P and X1, . . . ,Xn,
respectively.
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Theorem 4.19. Assume that P has finite PSR-variance. Then

lim
n→∞

sup
m∈E (PSR)

n

dM (m,E (PSR)) = 0 (4.10)

almost surely.

Our proof of Theorem 4.19 is contained in Section B.5 of the Supplementary Material (Jung et al.,
2024). There, we closely follow the arguments of Huckemann (2011b) used in verifying the conditions
required to establish strong consistency of the generalized Fréchet means. However, the theorems of
Huckemann (2011b) are not directly applied since the function dPSR is not continuous. Nevertheless,
the Fréchet-type objective function f (PSR) : M(p) → R is continuous, as shown in Lemma 4.7, a
fact that plays an important role in the proof of Theorem 4.19. Schötz (2022) extends the results of
Huckemann (2011b) by, among other things and in our notation, allowing for dPSR(X, ·) to be only
LSC. However, this is not actually helpful for dPSR either, because dPSR is actually continuous with
respect to the second variable (it is LSC with respect to the first variable); see Lemma 4.1 and Theorem
4.3.

In the proof of Theorem 4.19, we first show that with probability 1

∩∞
k=1 ∪∞

n=k
E (PSR)
n ⊂ E (PSR). (4.11)

In the terminology of Huckemann (2011b), (4.11) is called strong consistency of E (PSR)
n as an estima-

tor of E (PSR) in the sense of Ziezold (1977). Our result (4.10) is equivalent to strong consistency in the
sense of Bhattacharya and Patrangenaru (2003) (again using the terminology of Huckemann (2011b)),
as shown in Lemma B.20 in the Supplementary Material (Jung et al., 2024). Schötz (2022) classified
three types of convergence for a sequence of sets, referring to (4.11) as convergence in the outer limit,
and to (4.10) as convergence in the one-sided Hausdorff distance. The last type of convergence is con-
vergence in Hausdorff distance. Recall that for a metric space (M,d) the Hausdorff distance between
non-empty sets A,B ⊂ M is dH (A,B) :=max{supm∈A d(m,B),supm∈B d(A,m)}.

Theorem 4.19 states that, with probability 1, any sequence mn ∈ E (PSR)
n of sample PSR means will

eventually lie in an arbitrarily small neighborhood of the population PSR mean set as the sample size
n increases. But, conceivably there could be a population PSR mean in E (PSR) with no sample PSR
mean nearby even for large n, in which case dH (E (PSR)

n ,E (PSR)) would not approach zero. In other
words, E (PSR)

n would be a strongly consistent estimator of E (PSR) only with respect to the one-sided
Hausdorff distance, not the (two-sided) Hausdorff distance. However, if the population PSR mean is
unique up to the action of G(p), then E (PSR)

n is a strongly consistent estimator of E (PSR) with respect
to Hausdorff distance on (M(p),dM ), as shown next.

Corollary 4.20. Assume that P has finite PSR-variance, and that E (PSR) = G(p) · μ for some μ ∈
M(p). Then with probability 1,

lim
n→∞

sup
m∈E (PSR)

dM (E (PSR)
n ,m) = 0 (4.12)

and

lim
n→∞

dH (E (PSR)
n ,E (PSR)) = 0. (4.13)
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The strong consistency of sample PSR means with the population PSR means can be converted to
strong consistency of sample PSR means with the population SR means, as follows. For S ∈ Sym+(p)
and a set E ⊂ Sym+(p), we define dSR(S,E) := infE∈E dSR(S,E).

Corollary 4.21. Assume that P has finite PSR-variance. Then,
(i) limn→∞ sup

S∈F(E (PSR)
n ) dSR(S,F (E (PSR))) = 0 almost surely.

(ii) If, in addition, E (SR) ⊂ Stop
p , then limn→∞ sup

S∈F(E (PSR)
n ) dSR(S,E (SR)) = 0 almost surely.

(iii) If E (SR) ⊂ Stop
p and the population SR mean is unique with E (SR) = {μ(SR)}, then

limn→∞ dSR(F (E (PSR)
n ), μ(SR)) = 0 almost surely.

Note that in establishing a strong consistency property of E (PSR)
n with respect to population (partial)

SR means, we assumed only that the population mean set E (PSR) is unique up to the action of G(p),
not that the sample mean sets E (PSR)

n have this uniqueness property. We also did not assume that
E (PSR)
n ⊂ M top

p .
We next establish a central limit theorem for our estimator E (PSR)

n . Our strategy is to closely follow
the arguments in Bhattacharya and Lin (2017), Bhattacharya and Patrangenaru (2005), Eltzner et al.
(2021), Huckemann (2011a), for deriving central limit theorems for (generalized) Fréchet means on a
Riemannian manifold. In particular, our central limit theorem is expressed in terms of charts and the
asymptotic distributions of “linearized” estimators.

Our parameter space of interest M(p) = SO(p) × Diag+(p) is a Riemannian manifold of dimen-
sion d := (p−1)p

2 + p. As defined in Section 2.1, the tangent space at (U,D) ∈ M(p) is T(U ,D)M(p) =
{(AU,LD) : A ∈ so(p),L ∈ Diag(p)}, which can be canonically identified with so(p) ⊕Diag(p), a vector
space of dimension d.

At (U,D) ∈ M(p), we use the local chart (U(U ,D), ϕ̃(U ,D)), where

U(U ,D) = {(V,Λ) ∈ M(p) : ‖Log(VUT )‖F < π},

and where ϕ̃(U ,D) : U(U ,D) → so(p) ⊕ Diag(p) is defined by

ϕ̃(U ,D)(V,Λ) = (Log(VUT ),Log(ΛD−1)). (4.14)

Observe that ϕ̃−1
(U ,D)(A,L) = (Exp(A)U,Exp(L)D). The maps ϕ̃(U ,D) and ϕ̃−1

(U ,D) are the Riemannian
logarithm and exponential maps to (and from) the tangent space T(U ,D)M(p), composed with the right-
translation isomorphism between T(U ,D)M(p) and T(I ,I)M(p) = so(p) ⊕ Diag(p).

We also write the elements of so(p) ⊕ Diag(p) in a coordinate-wise vector form. For each (A,L) ∈
so(p) ⊕ Diag(p), define a suitable vectorization operator vec,

vec(A,L) :=
(√

k xSO(A)
xD(L)

)
∈ Rd, (4.15)

where xSO(A) ∈ R(p−1)p/2 consists of the upper triangular entries of A (in the lexicographical order-
ing) and xD(L) = (L11, . . . ,Lpp)T ∈ Rp consists of the diagonal entries of L. The inverse vectoriza-
tion operator vec−1 is well-defined as well. We use the notation φ(U ,D)(·, ·) := vec ◦ ϕ̃(U ,D)(·, ·) and
φ−1
(U ,D)(·) := ϕ̃−1

(U ,D) ◦ vec−1(·).
Assume the following.
(A1) The probability measure P induced by X on Sym+(p) is absolutely continuous with respect to

volume measure, and has finite PSR-variance.
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(A2) E (PSR) is unique up to the action of G(p). With probability 1, so is E (PSR)
n (for every n).

(A3) For some m0 ∈ E (PSR), P(dPSR(X,m0) < r ′cx) = 1.
The absolute continuity assumption (A1) ensures that any volume-zero (Lebesgue-measurable) sub-

set of Sym+(p) has probability zero. In particular, P(X ∈ Stop
p ) = 1 − P(X ∈ Slwr

p ) = 1. This fact greatly
simplifies our theoretical development.

The uniqueness assumption (A2) ensures that E (PSR)
n converges almost surely to E (PSR) with re-

spect to the Hausdorff distance (by Corollary 4.20). Therefore, for any m0 ∈ E (PSR), there exists a se-
quence mn ∈ E (PSR)

n satisfying dM (mn,m0) → 0 (or, equivalently, φm0(mn) → φm0(m0) = 0) as n →∞
almost surely. Assumption (A2) also guarantees that if (A3) is true for some PSR mean m0 ∈ E (PSR)

then it is true for any other PSR mean in E (PSR).
The radius r ′cx =

√
kβG(p)/4 in Assumption (A3) previously appeared in Theorem 4.16, where the

bounded-support assumption was used to ensure uniqueness of one element of a minimal pair (see
Definition 2.2) when the other element is fixed. Similarly, assumptions (A1) and (A3) ensure that, with
probability 1, for each Xi there exists a unique mi ∈ F −1(Xi) such that mi ∈ BdM

r′cx
(m0), a radius-r ′cx ball

in M(p) centered at m. A stronger version of this fact will be used (in the proof of Theorem 4.22, to be
given shortly) to rewrite the objective function f (PSR)

n involving dPSR as a Fréchet objective function
m 	→ 1

n

∑n
i=1 d2

M (mi,m), with probability 1.
In addition, the bounded support condition (A3) ensures that with probability 1 the function

d2
PSR(X, ·) is smooth (C∞) and convex on a convex set. Using this fact and geometric results given

in Afsari (2011) and Afsari, Tron and Vidal (2013), we show in the proof that the gradient

gradx d2
PSR(X, φ

−1
m0

(x)) :=
(
∂

∂xi
d2
PSR(X, φ

−1
m0

(x))
)
i=1,...,d

at x = 0 has mean zero and has a finite covariance matrix ΣP := Cov(gradx d2
PSR(X, φ

−1
m0

(0))). (We
conjecture that (A1) guarantees that ΣP is also positive-definite.) Likewise, as we will see in the proof,
the differentiability and (strict) convexity of d2

PSR(X, φ
−1
m0

(·)) guarantee that the expectation of the

Hessian HP(x) := E
(
Hd2

PSR(X, φ
−1
m0

(x))
)

exists and is positive definite at x = 0. Write HP := HP(0).

In summary, Assumptions (A1)—(A3) enable us to use a second-order Taylor expansion for f (PSR)
n ,

to which the classical central limit theorem and the law of large numbers are applied. Such an approach
was used in Bhattacharya and Patrangenaru (2005) and Huckemann (2011a). In particular, our proof for
part (b) of Theorem 4.22 (in Section B.5.2 of the Supplementary Material (Jung et al., 2024)) closely
follows the proof of Theorem 6 of Huckemann (2011a).

Theorem 4.22. Suppose that Assumptions (A1)—(A3) are satisfied, and let m0 ∈ E (PSR) be a PSR
mean. Let {m′

n ∈ E (PSR)
n } be any choice of sample PSR mean sequence. For each n, let mn ∈

argminm∈G(p)·m′
n

dM (m,m0). Then, with probability 1, the sequence {mn} is determined uniquely. Fur-
thermore,

(a) mn → m0 almost surely as n →∞, and
(b)

√
nφm0(mn) → Nd(0,H−1

P ΣPH−1
P ) in distribution as n →∞.

Estimating the covariance matrix (H−1
P ΣPH−1

P in our case) of the limiting Gaussian distribution (for
Riemannian manifold-valued Fréchet means) is a difficult task. For general Riemannian manifold-
valued Fréchet means, Bhattacharya and Patrangenaru (2005) and Bhattacharya and Bhattacharya
(2012) suggest using a moment estimator for HP and ΣP . This however requires specifying the sec-
ond derivatives of d2

PSR(X, φm0 (·)). We note that in the literature, explicit expressions for HP and ΣP
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are only available for geometrically very simple manifolds, with a high degree of symmetry, such as
spheres. As an instance, see Hotz and Huckemann (2015) and Section 5.3 of Bhattacharya and Bhat-
tacharya (2012) for the cases where the data and the Fréchet mean lie in the unit circle S1 and the more
general unit sphere Sd , respectively. Others, including Eltzner and Huckemann (2019), simply use the
sample covariance matrix of {φmn (mXi ) : i = 1, . . . ,n} (in our notation) as an estimate of H−1

P ΣPH−1
P .

In Section 5, we will use a bootstrap estimator of Var(φm0 (mn)), the variance of φm0(mn), instead of
directly estimating H−1

P ΣPH−1
P . Out bootstrap estimator is defined as follows.

Choose a PSR mean mn computed from the original sample {X1, . . . ,Xn}. For the bth bootstrap
sample (that is, a simple random sample of size n from the set {X1, . . . ,Xn}, treated as a fixed set, with
replacement), let m∗

b
be the PSR mean of the bootstrap sample that is closest to mn. (For the purpose of

defining the bootstrap estimator, we are assuming that such an m∗
b

is unique.) The bootstrap estimator
of Var(φm0(mn)) is then defined to be

V̂arboot(φm0 (mn)) :=
1
B

B∑
b=1

φmn (m∗
b) · (φmn (m∗

b))
T ,

where B is the number of bootstrap replicates.

5. Numerical examples

5.1. Comparison with other geometric frameworks

In analyzing SPD matrices, the scaling-rotation (SR) framework has an advantage in interpretation as
it allows describing the changes of SPD matrices in terms of rotation and scaling of the corresponding
ellipsoids. For example, only the SR framework yields interpolation curves which consist of pure rota-
tion when the endpoints differ only by rotation, when compared to the commonly used log-Euclidean
(Arsigny et al., 2006/07), affine-invariant (Fletcher et al., 2004, Pennec, Fillard and Ayache, 2006),
Procrustes (Dryden, Koloydenko and Zhou, 2009) and log-Cholesky (Lin, 2019) interpolation curves;
see Section C.2 of the Supplementary Material (Jung et al., 2024) for examples regarding diffusion
tensor imaging.

In this subsection, we illustrate situations under which averaging via the scaling-rotation framework
has similar interpretive advantages over the affine-invariant mean. Comparisons to means obtained
under log-Euclidean, Procrustes and log-Cholesky metrics are qualitatively similar to the conclusions
below, and can be found in the Supplementary Material (Jung et al., 2024). The affine-invariant (AI)
mean X̄ (AI) for a sample of SPD matrices X1, . . . ,Xn ∈ Sym+(p) is the sample Fréchet mean with respect
to the affine-invariant metric dAI :

X̄ (AI) = argmin
M ∈Sym+(p)

n∑
i=1

d2
AI (M,Xi),

where dAI (X,Y ) = ‖Log(X−1/2Y X−1/2)‖F . The AI mean exists and is unique for any finite sample
(Pennec, Fillard and Ayache, 2006).

A sample of size n = 200, sampled from a model detailed in Section C.3 of the Supplementary Ma-
terial (Jung et al., 2024), is plotted in Fig. 1. There, we have used two different types of “linearizations”
of Sym+(2), as explained below.

The Log-Euclidean coordinates on Sym+(2) are given by the three free parameters y11, y22 and√
2y12 of Y = (yi j) = Log(X) ∈ Sym(2). Write vecd(Y ) := (y11, y22,

√
2y12)T ∈ R3. These coordinates



Averaging SPD matrices via eigen-decomposition 1573

Figure 1. A sample of SPD matrices shown in the Log-Euclidean (LE) coordinates (left) and the PSR coordinates
(right), overlaid with the PSR mean and AI mean. For this data set, PSR mean appears to be a better representative
for the data, while the AI mean does not lie in the data-dense region. See Section 5.1 for details.

are chosen so that for any two vectors (vecd(X),vecd(Y )) = (x, y), the usual inner product 〈x, y〉 = xT y
corresponds to the Riemannian metric when X,Y ∈ Sym(2) are viewed as tangent vectors in the affine-
invariant framework. The left panel of Fig. 1 plots the data on the Log-Euclidean coordinates.

The PSR coordinates, used in the right panel of the figure for the same data, come from the coor-
dinates defined on a tangent space of the eigen-decomposition space M(p). More precisely, given a
reference point (U,D) ∈ M(p), we use the local chart (U(U ,D), φ(U ,D)) defined in (4.14), followed by
the vectorization via vec (see (4.15)), to determine a coordinate system. To illustrate this concretely, let
p = 2. Then ϕ̃(U ,D)(V,Λ) = (Log(VUT ),Log(ΛD−1)) =: (A,L) ∈ so(p) ⊕ Diag(p). The first coordinate
of xV ,Λ := vec(φ(U ,D)(V,Λ)) ∈ R3 is the free parameter a21 of A (multiplied by the scale parameter√

k), and corresponds to the rotation angle of VUT in radians (scaled by
√

k). The second and last co-
ordinates of xV ,Λ are the diagonal entries of L. Multiplying by

√
k as above affords us the convenience

that for any two x, y, the usual inner product 〈x, y〉 = xT y corresponds to the Riemannian metric gM
we have assumed on the tangent spaces of M(p).

When representing SPD-valued data X1, . . . ,Xn ∈ Sym+(2) in PSR coordinates, we choose the ref-
erence point (U,D) to be an arbitrarily chosen PSR mean m̂PSR of the data. Care is needed since
there are multiple eigen-decompositions corresponding to each observation Xi . For each Xi , an eigen-
decomposition mi ∈ F −1(Xi) ⊂ M(p) is chosen so that mi has the smallest geodesic distance from
m̂PSR among all elements of F−1(Xi). The right panel of Fig. 1 plots the same data as in the left panel,
but in these PSR coordinates.

The AI mean and a PSR mean for this data set are also plotted in Fig. 1. (The log-Euclidean mean
is located close to the AI mean, and is omitted from the figure.) It can be seen that major modes of
variation in the data are well described in terms of rotation angles and scaling, while the variation
appears to be highly non-linear in Log-Euclidean (LE) coordinates. As one might expect from this
non-linearity, we observe that the AI mean is located far from the data, while the PSR mean appears to
be a better representative of the data.

In the opposite direction, we also considered a data set sampled from an SPD-matrix log-normal
distribution (Schwartzman, 2016). Note that the SPD-matrix log-normal distributions on Sym+(p) cor-
respond to a multivariate normal distribution in Log-Euclidean coordinates. The data and their AI and
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Figure 2. A sample of SPD matrices shown in the Log-Euclidean (LE) coordinates (left) and the PSR coordinates
(right), overlaid with the PSR mean and AI mean. See Section 5.1 for details.

PSR means are plotted in Fig. 2. While the AI mean is well approximated by the average of data in
LE coordinates, the PSR mean (in LE coordinates) is also not far from this average. Similarly, the PSR
mean is approximately the average in PSR coordinates, and the AI mean is also not far. Therefore,
we may conclude that using the SR framework and PSR means is beneficial especially if variability
in the sample (or in a population) is pronounced in terms of rotations, while the cost of using the SR
framework is small for the log-normal case.

5.2. An application to multivariate tensor-based morphometry

In Paquette et al. (2017), the authors compared the lateral ventricular structure in the brains of 17 pre-
term and 19 full-term infant children. After an MRI scan of a subject’s brain was obtained and processed
through an image processing pipeline, the shape data collected at 102816 vertices on the surfaces of
their left and right ventricles were mapped onto the left and right ventricles of a template brain image,
after which the 2 × 2 Jacobian matrix J from that surface registration transformation was computed at
each vertex for each subject. The deformation tensor X = (JT J)1/2 ∈ Sym+(2) was then computed at
each vertex for each subject. To summarize the structure of the data, there are 102816 vertices along
the surfaces of the template ventricles, and at each vertex there are deformation tensors (2 × 2 SPD
matrices) from n1 = 17 pre-term and n2 = 19 full-term infants. We will call these group 1 and group 2,
respectively.

One way that the authors tested for differences in ventricular shape between the two groups was by
performing two-sample location tests at each vertex via use of the log-Euclidean version of Hotelling’s
T2 test statistic introduced in Lepore et al. (2008). The log-Euclidean (LE) version of the T2 test statistic
is the squared Mahalanobis distance between the full-term and pre-term log-Euclidean sample means
on the LE coordinates (defined in Section 5.1).

Similarly, one could also measure separation between groups by comparing their respective PSR
means in PSR coordinates. For this two-group context, the reference point for the PSR coordinates is
given by a PSR mean computed from pooled sample (with sample size n1 + n2).

We have chosen vertex 75412 as an example to illustrate a scenario in which two groups have little
separation in the LE coordinates but are well-separated in the PSR coordinates. In the top row of
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Figure 3. Real data example. (Top row) Observations corresponding to Group 1 (and Group 2) are shown in
blue (and red, respectively) dots. The group-wise LE and PSR means are shown as the asterisks. (Bottom row)
Bootstrap replications of the LE and PSR means (left and right panels, respectively) for each group, with the 95%
approximate confidence regions shown as transparent ellipsoids. See Section 5.2 for details.

Figure 3, tensors from the two groups as well as the group-wise LE and PSR means are plotted in their
respective coordinates. There is little visible separation between the two groups in the LE coordinates,
while there is near-total separation in the PSR coordinates.

To visualize the sampling distributions of the group-wise means under the log-Euclidean and scaling-
rotation frameworks, we computed 500 bootstrap sample means for each group, under both geometric
frameworks. These are plotted in their respective tangent spaces in the bottom row of Figure 3. (See
also Figure C.11 in the Supplementary Material (Jung et al., 2024), in which one can see that the (boot-
strap) sampling distributions of the group-wise PSR means are approximately normal.) The nonpara-
metric bootstrap provides an estimate of standard errors of the sample means, from which (bootstrap-
approximated) parametric 95% confidence regions are obtained. For this, we assume normality, as
suggested by the central limit theorem, Theorem 4.22, and obtain an approximate 95% confidence re-
gion given by {x ∈ R3 : xT Σ̂−1x ≤ χ2

0.05,2}, for each sample mean. Here, Σ̂ is the sample covariance
matrix of the bootstrap (group-wise LE or PSR) sample means, and χ2

0.05,2 is the 95% quantile of the
χ2

2 distribution. The resulting confidence regions are overlaid in the bottom row of Figure 3 as well. As
in the top row, there is considerable overlap between the LE confidence regions, while there is complete
separation between the two confidence regions for the group-wise PSR sample means, especially along
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the direction of rotation angles. We further utilize the asymptotic normality of the group-wise sample
averages on the tangent space by conducting a approximate T2 test for testing the null hypothesis of
μ1 = μ2, where μi stands for the population mean vector of the ith group, against the general alterna-
tive μ1 � μ2. We used the unequal-covariance-variant of Hotelling’s T2 statistics and the approximate
null distribution of Krishnamoorthy and Yu (2004) to obtain the p-value for this test. (See the Supple-
mentary Material (Jung et al., 2024) for details.) When the LE means and LE coordinates are used,
the p-value of the test is 0.3447. That is, there is not enough evidence to reject the null hypothesis
when LE means are used. On the other hand, when PSR means are used, the corresponding p-value is
nearly zero, reflecting the complete separation of confidence regions, seen in the bottom right panel of
Figure 3. This example suggests that the scaling-rotation framework may be better at detecting group
differences than other frameworks when most of the variability between the groups is due to rotation.

6. Discussion

We have presented the first statistical estimation methods for Sym+(p) based on the scaling-rotation
framework of Jung, Schwartzman and Groisser (2015). These estimation methods are intended to set
the foundation for the development of scaling-rotation-framework-based statistical methods, such as
testing the equality of two or more PSR means, testing for a variety of eigenvalue and eigenvector
patterns of SPD matrices, and an analogue of principal component analysis for SPD-valued data. The
scaling-rotation framework should also be particularly useful for diffusion tensor processing since the
eigenvectors and eigenvalues of a diffusion tensor model the principal directions and intensities of
water diffusion at a given voxel, and are thus the primary objects of interest.

The scaling-rotation estimation procedure presented here works well for p = 2,3. For these low-
dimensional cases, the computation times for PSR means are significantly less than those for the AI
means. However, for larger p, the number of eigen-decompositions of an SPD matrix from Stop

p grows
rapidly with p, and the computational complexity of PSR mean computation increases. One avenue
for interesting future work is to develop computational procedures for higher p. Another avenue is to
develop a proper two-sample or multi-sample testing framework, and dimension-reduction and regres-
sion methods using the eigen-decomposition spaces, and to establish asymptotic and non-asymptotic
properties of these statistical methods, reflecting the structure of Sym+(p) as a stratified space under
eigen-decomposition. Lastly, the authors are currently studying a genuine metric for Sym+(p) that in-
corporates the benefits of the scaling-rotation framework. This metric can be used to analyze Sym+(p)-
valued data within the framework of metric statistics (Dubey, Chen and Müller, 2024, Liu, Wang and
Zhu, 2022).
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